555定时器是一种
集成电路芯片,常被用于
定时器、脉冲产生器和振荡电路。555可被作为电路中的延时器件、触发器或起振元件。
设计
555定时器由Hans R. Camenzind于1971年为西格尼蒂克公司设计。西格尼蒂克公司后来被飞利浦公司所并购。
不同的制造商生产的555芯片有不同的结构,标准的555芯片集成有25个
晶体管,2个二极管和15个
电阻并通过8个引脚引出(DIP-8封装)。555的派生型号包括556(集成了两个555的DIP-14芯片)和558与559。
NE555的工作温度范围为0-70°C,军用级的SE555的工作温度范围为−55到+125 °C。555的封装分为高可靠性的金属封装(用T表示)和低成本的环氧树脂封装(用V表示),所以555的完整标号为NE555V、NE555T、SE555V和SE555T。一般认为555芯片名字的来源是其中的三枚5KΩ电阻,但Hans Camenzind否认这一说法并声称他是随意取的这三个数字。
555还有低功耗的版本,包括7555和使用
CMOS电路的TLC555。7555的功耗比标准的555低,而且其生产商宣称7555的控制引脚并不像其他555芯片那样需要接地电容,同时供电与地之间也不需要消除噪声的
去耦电容。
引脚
用途
555定时器可工作在三种工作模式下:
单稳态模式
在单稳态工作模式下,555定时器作为单次触发
脉冲发生器工作。当触发输入电压降至VCC的1/3时开始输出脉冲。输出的脉宽取决于由定时
电阻与
电容组成的RC网络的时间常数。当电容电压升至VCC的2/3时输出脉冲停止。根据实际需要可通过改变RC网络的时间常数来调节脉宽。
输出脉宽t,即电容电压充至VCC的2/3所需要的时间由下式给出:
虽然一般认为当电容电压充至VCC的2/3时电容通过OC门瞬间放电,但是实际上放电完毕仍需要一段时间,这一段时间被称为“弛豫时间”。在实际应用中,触发源的周期必须要大于弛豫时间与脉宽之和(实际上在工程应用中是远大于)。
双稳态模式
双稳态工作模式下的555芯片类似基本
RS触发器。在这一模式下,触发引脚(引脚2)和复位引脚(引脚4)通过
上拉电阻接至高电平,阈值引脚(引脚6)被直接接地,控制引脚(引脚5)通过小电容(0.01到0.1μF)接地,放电引脚(引脚7)浮空。所以当引脚2输入高(有误应为低)电压时输出置位,当引脚4接地时输出复位。
无稳态模式
无稳态工作模式下555定时器可输出连续的特定频率的方波。电阻R1接在VCC与放电引脚(引脚7)之间,另一个电阻(R2)接在引脚7与触发引脚(引脚2)之间,引脚2与阈值引脚(引脚6)短接。工作时电容通过R1与R2充电至2/3VCC,然后输出电压翻转,电容通过R2放电至1/3VCC,之后电容重新充电,输出电压再次翻转。
对于双极型555而言,若使用很小的R1会造成OC门在放电时达到饱和,使输出波形的低电平时间远大于上面计算的结果。
为获得
占空比小于50%的矩形波,可以通过给R2并联一个二极管实现。这一二极管在充电时导通,短路R2,使得电源仅通过R1为电容充电;而在放电时截止以达到减小充电时间降低占空比的效果。
参数
以下为NE555的电气参数,其他不同规格的555定时器可能会有不同的参数,请查阅数据手册。
衍生芯片
555定时器有许多不同公司生产的衍生型号,其中有引脚功能不同的型号,也有采用
CMOS的设计。有的芯片中包括数个集成的555定时器。555芯片家族的其他一些型号如下:
556双定时器
在一块芯片中集成两个555定时器的型号为556,这种芯片包括14个引脚。
558四定时器
在一块芯片中集成四个555定时器的型号为558。这种芯片包括16个引脚,其中四个555定时器共用供电、接地和复位的引脚。放电引脚与阈值引脚被合为同一个引脚并被称为“定时”。同时触发引脚改为
下降沿触发。
参见