ARMA谱估计,线性系统可以用线性差分方程进行描述,这种差分模型就是自回归----滑动平均模型(AutoRegression----Moving Average,ARMA )。
:任何一个有理式的
功率谱密度都可以用一个ARMA随机过程的功率谱密度精确逼近。
ARMA模型定义若离散随机过程{x(n)}服从线性差分方程x(n)+Ai*x(n-i)=e(n)+Bj*e(n-j)
式中i=1,2,...p;j=1,2,...q;e(n)是一离散白噪声,则称{x(n)}为ARMA过程,而上式称为ARMA模型。系数和分别称为自回归(AR)参数和滑动平均(MA)参数,而p和q分别叫做AR阶数和MA阶数。显然,ARMA模型描述的是一个时不变的线性系统。具有AR阶数p和MA阶数Q的ARMA过程常记作用ARMA(p,q)。