梯度材料,严格意义上讲,应该称作“梯度功能复合材料”(简称FGM),又称倾斜功能材料。 古人很早就根据这种思路来
炼铁,在日本出土的一把剑刃上,我们可以看到剑锋、刃部和主体的颜色是不同的,这说明它们的成分也是不同的。大自然早就把这个概念引入生物组织中了,例如,动物的骨头就是一种梯度结构,外部坚韧,内部疏松多孔。厨房使用的一把菜刀刀刃部需要硬度高的材料,而其他部位的材料则应该具有高强度和韧性。
所谓
梯度材料,严格意义上讲,应该称作“梯度功能复合材料”(FunctionallyGradientMaterials,简称FGM),又称倾斜功能材料。
一般复合材料中分散相是均匀分布的,整体材料的性能是同一的,但是在有些情况下,人们常常希望同一件材料的两侧具有不同的性质或功能,又希望不同性能的两侧结合得完美,从而不至于在苛刻的使用条件下因性能不匹配而发生破坏。从航天飞机的推进系统中最有代表性的超音速燃烧
冲压式发动机为例,燃烧气体的温度通常要超过2000℃,对燃烧室壁会产生强烈的热冲击;燃烧室壁的另一侧又要经受作为燃料的液氢的冷却作用,通常温度为-200℃左右。这样,燃烧室壁接触燃烧气体的一侧要承受极高的温度,接触液氢的一侧又要承受极低的温度,一般材料显然满足不了这一要求。于是,人们想到将金属和陶瓷联合起来使用,用陶瓷去对付高温,用金属来对付低温。但是,用传统的技术将金属和陶瓷结合起来时,由于二者的界面热力学特性匹配不好,在极大的热应力下还是会遭到破坏。针对这种情况,1984年,日本科学家平井敏雄首先提出了梯度功能材料的新设想和新概念,并展开研究。这种全新的材料设计概念的基本思想是:根据具体要求,选择使用两种具有不同性能的材料,通过连续地改变两种材料的组成和结构,使其内部界面消失,从而得到功能相应于组成和结构的变化而渐变的非均质材料,以减小和克服结合部位的性能不匹配因素。例如,对上述的燃烧室壁,在陶瓷和金属之间通过连续地控制内部组成和微细结构的变化,使两种材料之间不出现界面,从而使整体材料具有耐热应力强度和机械强度也较好的新功能。
当前对聚合物梯度材料的分类尚没有统一的标准。根据应用领域的不同,可分为核
功能梯度材料、生物功能梯度材料、化学功能梯度材料、光学功能梯度材料等;根据其组成材料的不同,可以分为高聚物/高聚物、高聚物/陶瓷、高聚物/金属和高聚物/无机填料等类型;根据制备方法的不同,又有化学方法制备型和物理方法制备型;其中根据梯度化因素的不同,化学方法制备型梯度材料中又可分为组成梯度变化型、交联度梯度变化型、结晶度梯度变化型等梯度材料;物理方法制备型梯度材料中又可分为取向度梯度变化型、相形态梯度变化型、分散相粒径或组成梯度变化型等。
关于设计:
梯度功能材料的设计特色在于设计与材料的合成手段紧密结合,并借助于计算机辅助设计专家系统,得出接近于实际的结果。关于制备材料的性能取决于体系选择及内部结构。对梯度功能材料必须采取有效的制备技术来保证材料的设计。目前,已开发的梯度材料制备方法主要有:
化学气相沉积法、物理蒸发法、
等离子喷涂法、颗粒梯度排列法、自蔓延高温合成法、液膜直接成法及薄膜浸渗成型法等。
关于评价:对梯度功能材料性能评价,目前国内外尚没有统一的标准,由于使用目的、使用环境、制备方法等的不同,可能有不同的评价方法。例如,对等离子喷涂法制备的FGM,参照等离子喷涂的有关标准,可进行结合强度、热冲击性、隔热性以及耐热性等性能评价。
虽然FGM的最初目的是解决航天飞机的热保护问题,提出了梯度化结合金属和超耐热陶瓷这一新奇想法。鉴于梯度材料的特点,它很快就被利用在其他功能材料的构想和研究中,现在,随着FGM的研究和开发,其用途已不局限于宇航工业上,其应用已扩大到核能源、电子、化学、生物医学工程等领域,其组成也由金属-陶瓷发展成为金属-合金、非金属-非金属、非金属-陶瓷、高分子膜-高分子膜等多种组合,种类繁多,应用前景十分广阔。