ICA
独立成分分析
信号处理中,独立成分分析(ICA)是一种用于将多元信号分离为加性子分量的计算方法。这是通过假设子分量是非高斯信号,并且在统计上彼此独立来完成的。ICA是盲源分离的特例。一个常见的示例应用程序是在嘈杂的房间中聆听一个人的语音的“ 鸡尾酒会问题 ”。
基本介绍
X=AS
U=WX=WAS
过程
(1)对输入数据进行中心化和白化预处理
X*=X-u
经过白化变换后的样本数据
Z=Wz X*
(2)从白化样本中求解出解混矩阵W
通过优化目标函数的方法得到W
(3)得到独立的基向量U
U=WX
应用:表情分类
得到基向量U后,任何一个样本可用U的线性组合来表示。
线性组合的系数即Xi向U上的投影系数:
Ei=UXi'
训练样本和测试样本可分别得到Ei和Etest。
然后选择合适的分类器,就可以进行分类。
fastica简介
function [Out1, Out2, Out3] = fastica(mixedsig, varargin)
%FASTICA(mixedsig) estimates the independent components from given
% multidimensional signals. Each row of matrix mixedsig is one
% observed signal.
% = FASTICA (mixedsig); the rows of icasig contain the
% estimated independent components.
% = FASTICA (mixedsig); outputs the estimated separating
% matrix W and the corresponding mixing matrix A.
mixedsig为输入向量,icasig为求解的基向量。
A即为混合矩阵,可以验证mixedsig=A×icasig。
W即为解混矩阵,可以验证icasig=W×mixedsig。
参考资料
最新修订时间:2024-01-18 03:30
目录
概述
基本介绍
过程
参考资料