LBG算法
数学术语
LBG算法是由Linde,Buzo,Gray三人在1980年提出的。它其实相当于Lord-Max方法的多维推广,但它并不需要知道输入矢量的概率分布,LBG算法通过训练矢量集和一定的迭代算法来逼近最优的再生码本。
思想
1.随意选取n个图像块作为码矢量。
2.由这n个码矢量对所有的图像块进行划分,即分成n个集合,使每个集合中的图像块,都是与各码矢量距离中,与对应的码矢量的距离最小的。
3.由这n个集合的重心,得到n个新的码矢量。
4.如果这些个码矢量与原来的码矢量变化不大(收敛),就完成码书的训练,否则重新进行2、3步。
局限性
1.最优量化器是对于训练向量集而言,对于实际的未经训练的向量集是否最优还很难说,这要依赖于训练向量的代表性到底真实到何种程度。
2.由于优化分割的过程没有依据数据结构方面的规则或者限制,而是自由进行,这就使得对码本进行有效组织时遇到极大的困难。
3.在有些时候根本无法找到真正有代表性的训练向量集。
参考资料
最新修订时间:2024-05-21 13:11
目录
概述
思想
局限性
参考资料