NEMS纳机电系统
NEMS纳机电系统
NEMS纳机电系统(Nano-Electromechanical System,简称NEMS)是20世纪90年代末、21世纪初提出的一个新概念。可以这样来理解这个概念,即NEMS是特征尺寸在1~100nm、以机电结合为主要特征,基于纳米级结构新效应的器件和系统。
简介
微机电系统是微米大小的机械系统,其中也包括不同形状的三维平板印刷产生的系统。这些系统的大小一般在微米到毫米之间。在这个大小范围中日常的物理经验往往不适用。比如由于微机电系统的面积对体积比比一般日常生活中的机械系统要小得多,其表面现象如静电润湿等比体积现象如惯性热容量等要重要。它们一般是由类似于生产半导体的技术如表面微加工、体型微加工等技术制造的。其中包括更改的加工方法如压延、电镀、湿蚀刻、干蚀刻、电火花加工等等。
生产微机电系统的公司的大小各不相同。大的公司主要集中于为汽车、生物医学或电子工业生产大批量的便宜的系统。成功的小公司则集中于生产创新的技术。所有这些公司都致力于研究开发。随着传感器的发展微机电系统的复杂性和效率不断提高。
常见的应用有:
设计微机电系统最重要的工具是有限元分析
研究工作
目前,世界各地在NEMS及其相关方面开展的研究工作主要有:
(1) 谐振式传感器,包括质量传感、磁传感、惯性传感等;
(2) RF谐振器、滤波器;
(3)微探针热读写高密度存储、纳米磁柱高密度存储技术;
(4)单分子、单DNA检测传感器以及NEMS生化分析系统(N-TAS);
(5)生物电机;
(6)利用微探针的生化检测、热探测技术;
(7)热式红外线传感器
(8)机械单电子器件;
(9)硅基纳米制作、聚合物纳米制作、自组装等等。
为什么要研究发展NEMS系统?因为人们希望对微小的力和位移进行测量。超导器件约瑟夫森结中电流的震荡,迈克耳逊干涉仪等都可以归结为对微小位移的测量。集成化的NEMS系统能够对克的质量和牛顿的力进行测量。这么灵敏的探测器可以帮助我们测量单个核子的核自旋,进而对大分子的三维结构能够进行实时测量。
NEMS系统中的振子频率一般高达几十兆赫兹,最高的频率达到10^9赫兹。振子的震动是与电场耦合着的,可以受电场控制。纳米光机械系统(NOMS)也与此类似,不过与机械振子耦合的不是电场,而是光场。与NEMS不同,NOMS也可以用作光学器件,完成一些非线性光学的实验,或者作为一些特殊的光源。
如何冷却
目前大家最关心的问题是如何冷却这个振子,希望能够冷却到能量的基态。对于不同震动频率的振子,基态对应的温度不同。对10^9赫兹的振子来说,温度也在50毫开尔文。随着振动频率的降低,临界温度也随之降低。因此对于一般的NEMS系统来说,是无法通过降低环境温度使得它处于基态的。只能主动的冷却它。最近2年来,这方面的实验进展比较大,但是并没有一个里程碑式的实验表明可以把振子冷却到了基态。
历史
微型机械的概念在相应的加工技术出现之前就被提出了。1959年,理查德·费曼加州理工学院进行题为《底层还有大空间》(英语:There's Plenty of Room at the Bottom)的演讲。费曼在演讲中提出了在原子尺度上操纵物质的可能性以及将面临的挑战。 1964年,西屋公司的一支团队制造出了第一批微机电设备。这种设备名叫谐振栅极晶体管。
技术
微机电系统有多种原材料和制造技术,选择条件是系统的应用、市场等等。
硅是用来制造集成电路的主要原材料。由于在电子工业中已经有许多实用硅制造极小的结构的经验,硅也是微机电系统非常常用的原材料。硅的物质特性也有一定的优点。单晶体的硅遵守胡克定律,几乎没有弹性滞后的现象,因此几乎不耗能,其运动特性非常可靠。此外硅不易折断,因此非常可靠,其使用周期可以达到上兆次。一般微机电系统的生产方式是在基质上堆积物质层,然后使用平板印刷和蚀刻的方法来让它形成各种需要的结构。
表面微加工
表面微加工是在硅芯片上沉积多晶硅然后进行加工。
深层刻蚀
深层刻蚀如深层反应离子刻蚀技术向硅芯片内部刻蚀。刻蚀到芯片内部的一个牺牲层。这个牺牲层在刻蚀完成后被腐蚀掉,这样本来埋在芯片内部的结构就可以自由运动了。
体型微加工
体型微加工与深层刻蚀类似,是另一种去除硅的方法。一般体型微加工使用碱性溶液如氢氧化钾来腐蚀平板印刷后留下来的硅。这些碱溶液腐蚀时的相对各向异性非常强,沿一定的晶体方向的腐蚀速度比其它的高1000倍。这样的过程往往用来腐蚀v状的沟。假如选择的原材料的晶向足够精确的话这样的沟的边可以非常平。
高分子材料
虽然电子工业对硅加工的经验是非常丰富和宝贵的,并提供了很大的经济性,但是纯的硅依然是非常昂贵的。高分子材料非常便宜,而且其性能各种各样。使用注射成形压花、立体光固化成形等技术也可以使用高分子材料制造微机电系统,这样的系统尤其有利于微液体应用,比如可携测血装置等。
金属
金属也可以用来制造微机电系统。虽然比起硅来金属缺乏其良好的机械特性,但是在金属的适用范围内它非常可靠。
参考资料
最新修订时间:2022-08-25 16:27
目录
概述
简介
参考资料