Word2vec
产生词向量的相关模型
Word2vec,是一群用来产生词向量的相关模型。这些模型为浅而双层的神经网络,用来训练以重新建构语言学之词文本。网络以词表现,并且需猜测相邻位置的输入词,在word2vec中词袋模型假设下,词的顺序是不重要的。训练完成之后,word2vec模型可用来映射每个词到一个向量,可用来表示词对词之间的关系,该向量为神经网络之隐藏层。
简介
随着计算机应用领域的不断扩大,自然语言处理受到了人们的高度重视。机器翻译、语音识别以及信息检索等应用需求对计算机的自然语言处理能力提出了越来越高的要求。为了使计算机能够处理自然语言,首先需要对自然语言进行建模。自然语言建模方法经历了从基于规则的方法到基于统计方法的转变。从基于统计的建模方法得到的自然语言模型称为统计语言模型。有许多统计语言建模技术,包括n-gram、神经网络以及 log_linear 模型等。在对自然语言进行建模的过程中,会出现维数灾难、词语相似性、模型泛化能力以及模型性能等问题。寻找上述问题的解决方案是推动统计语言模型不断发展的内在动力。在对统计语言模型进行研究的背景下,Google 公司在 2013年开放了 Word2vec这一款用于训练词向量的软件工具。Word2vec 可以根据给定的语料库,通过优化后的训练模型快速有效地将一个词语表达成向量形式,为自然语言处理领域的应用研究提供了新的工具。Word2vec依赖skip-grams或连续词袋(CBOW)来建立神经词嵌入。Word2vec为托马斯·米科洛夫(Tomas Mikolov)在Google带领的研究团队创造。该算法渐渐被其他人所分析和解释。
依赖
词袋模型
词袋模型(Bag-of-words model)是个在自然语言处理和信息检索(IR)下被简化的表达模型。此模型下,像是句子或是文件这样的文字可以用一个袋子装着这些词的方式表现,这种表现方式不考虑文法以及词的顺序。最近词袋模型也被应用在计算机视觉领域。词袋模型被广泛应用在文件分类,词出现的频率
Skip-gram 模型
Skip-gram 模型是一个简单但却非常实用的模型。在自然语言处理中,语料的选取是一个相当重要的问题: 第一,语料必须充分。一方面词典的词量要足够大,另一方面要尽可能多地包含反映词语之间关系的句子,例如,只有“鱼在水中游”这种句式在语料中尽可能地多,模型才能够学习到该句中的语义和语法关系,这和人类学习自然语言一个道理,重复的次数多了,也就会模仿了; 第二,语料必须准确。 也就是说所选取的语料能够正确反映该语言的语义和语法关系,这一点似乎不难做到,例如中文里,《人民日报》的语料比较准确。 但是,更多的时候,并不是语料的选取引发了对准确性问题的担忧,而是处理的方法。 n元模型中,因为窗口大小的限制,导致超出窗口范围的词语与当前词之间的关系不能被正确地反映到模型之中,如果单纯扩大窗口大小又会增加训练的复杂度。Skip-gram 模型的提出很好地解决了这些问题。顾名思义,Skip-gram 就是“跳过某些符号”,例如,句子“中国足球踢得真是太烂了”有4个3元词组,分别是“中国足球踢得”、“足球踢得真是”、“踢得真是太烂”、“真是太烂了”,可是我们发现,这个句子的本意就是“中国足球太烂”可是上述 4个3元词组并不能反映出这个信息。Skip-gram 模型却允许某些词被跳过,因此可以组成“中国足球太烂”这个3元词组。 如果允许跳过2个词,即 2-Skip-gram。
应用
Word2vec用来建构整份文件(而非独立的词)的延伸应用已被提出,该延伸称为paragraph2vec或doc2vec,并且用C、Python和 Java/Scala实做成工具。Java和Python也支援推断文件嵌入于未观测的文件。对word2vec框架为何做词嵌入如此成功知之甚少,约阿夫·哥德堡(Yoav Goldberg)和欧莫·列维(Omer Levy)指出word2vec的功能导致相似文本拥有相似的嵌入(用余弦相似性计算)并且和约翰·鲁伯特·弗斯的分布假说有关。词嵌入是自然语言处理(NLP)中语言模型与表征学习技术的统称。概念上而言,它是指把一个维数为所有词的数量的高维空间嵌入到一个维数低得多的连续向量空间中,每个单词或词组被映射为实数域上的向量。词嵌入的方法包括人工神经网络、对词语同现矩阵降维、概率模型以及单词所在上下文的显式表示等。在底层输入中,使用词嵌入来表示词组的方法极大提升了NLP中语法分析器和文本情感分析等的效果。词嵌入技术起源于2000年。约书亚·本希奥等人在一系列论文中使用了神经概率语言模型(Neural probabilistic language models)使机器“习得词语的分布式表示(learning a distributed representation for words)”,从而达到将词语空间降维的目的。罗维斯(Roweis)与索尔(Saul)在《科学》上发表了用局部线性嵌入(LLE)来学习高维数据结构的低维表示方法。这个领域开始时稳步发展,在2010年后突飞猛进;一定程度上而言,这是因为这段时间里向量的质量与模型的训练速度有极大的突破。词嵌入领域的分支繁多,有许多学者致力于其研究。2013年,谷歌一个托马斯·米科洛维(Tomas Mikolov)领导的团队发明了一套工具word2vec来进行词嵌入,训练向量空间模型的速度比以往的方法都快。许多新兴的词嵌入基于人工神经网络,而不是过去的n元语法模型和非监督式学习。
有关术语
统计语言模型
统计语言模型是用于刻画一个句子出现概率的模型。给定一个由 n 个词语按顺序组成的句子,则概率即为统计语言模型。通过贝叶斯公式,可以将概率进行分解。要计算一个句子出现的概率,只需要计算出在给定上下文的情况下,下一个词为某个词的概率即可,即 。当所有条件概率都计算出来后,通过连乘即可计算出。所以,统计语言模型的关键问题在于找到计算条件概率 的模型。
词向量
词向量具有良好的语义特性,是表示词语特征的常用方式。词向量每一维的值代表一个具有一定的语义和语法上解释的特征。所以,可以将词向量的每一维称为一个词语特征。词向量具有多种形式,distributed representation 是其中一种。一个 distributed representation 是一个稠密、低维的实值向量。distributed representation 的每一维表示词语的一个潜在特征,该特 征捕获了有用的句法和语义特性。可见 ,distributed representation 中的 distributed 一词体现了词向量这样一个特点:将词语的不同句法和语义特征分布到它的每一个维度去表示。
参考资料
最新修订时间:2023-11-14 20:12
目录
概述
简介
参考资料