内核(kernel)利用文件描述符(file descriptor)来访问文件。文件描述符是
非负整数。打开现存文件或新建文件时,内核会返回一个文件描述符。读写文件也需要使用文件描述符来指定待读写的文件。
提出前提
每一个文件描述符会与一个打开文件相对应,同时,不同的文件描述符也会指向同一个文件。相同的文件可以被不同的进程打开也可以在同一个进程中被多次打开。系统为每一个进程维护了一个文件描述符表,该表的值都是从0开始的,所以在不同的进程中你会看到相同的文件描述符,这种情况下相同文件描述符有可能指向同一个文件,也有可能指向不同的文件。具体情况要具体分析,要理解具体其概况如何,需要查看由内核维护的3个数据结构。
1.进程级的文件描述符表;
2.系统级的打开文件描述符表;
3.文件系统的i-node表。
简介
文件描述符在形式上是一个非负整数。实际上,它是一个索引值,指向
内核为每一个进程所维护的该进程打开文件的记录表。当程序打开一个现有文件或者创建一个新文件时,内核向进程返回一个文件描述符。在程序设计中,一些涉及底层的程序编写往往会围绕着文件描述符展开。但是文件描述符这一概念往往只适用于
UNIX、
Linux这样的操作系统。
习惯上,标准输入(standard input)的文件描述符是 0,
标准输出(standard output)是 1,标准错误(standard error)是 2。尽管这种习惯并非
Unix内核的特性,但是因为一些 shell 和很多应用程序都使用这种习惯,因此,如果内核不遵循这种习惯的话,很多应用程序将不能使用。
POSIX 定义了 STDIN_FILENO、STDOUT_FILENO 和 STDERR_FILENO 来代替 0、1、2。这三个
符号常量的定义位于头文件 unistd.h。
文件描述符的有效范围是 0 到 OPEN_MAX。一般来说,每个进程最多可以打开 64 个文件(0 — 63)。对于 FreeBSD 5.2.1、Mac OS X 10.3 和 Solaris 9 来说,每个进程最多可以打开文件的多少取决于
系统内存的大小,int 的大小,以及系统管理员设定的限制。Linux 2.4.22 强制规定最多不能超过 1,048,576 。
文件描述符是由
无符号整数表示的句柄,进程使用它来标识打开的文件。文件描述符与包括相关信息(如文件的打开模式、文件的位置类型、文件的初始类型等)的文件对象相关联,这些信息被称作文件的上下文。
如何创建文件描述符
进程获取文件描述符最常见的方法是通过本机
子例程open或create获取或者通过从
父进程继承。后一种方法允许子进程同样能够访问由父进程使用的文件。文件描述符对于每个进程一般是特定的。当用fork子例程创建某个子进程时,该子进程会获得其父进程所有文件描述符的副本,这些文件描述符在执行fork时打开。在由fcntl、dup和
dup2子例程复制或拷贝某个进程时,会发生同样的复制过程。
对于每个进程,操作系统
内核在u_block结构中维护文件描述符表,所有的文件描述符都在该表中建立索引。
特点
优点
文件描述符的好处主要有两个:
在
UNIX、
Linux的
系统调用中,大量的系统调用都是依赖于文件描述符。
例如,下面的代码就示范了如何基于文件描述符来读取当前目录下的一个指定文件,并把文件内容打印至Console中。
此外,在Linux系列的操作系统上,由于Linux的设计思想便是把一切设备都视作文件。因此,文件描述符为在该系列平台上进行设备相关的编程实际上提供了一个统一的方法。
#include
* O_CREAT: 如果文件不存在则创建
* O_RDONLY:以只读模式打开文件
*/
fd = open(path, O_CREAT | O_RDONLY, 0644);
exit(EXIT_FAILURE); } memset(buf, 0x00, 256);
memset(buf, 0x00, 256);
} close(fd);
缺点
文件描述符的概念存在两大缺点:
在非UNIX/
Linux操作系统上(如Windows NT),无法基于这一概念进行编程。
由于文件描述符在形式上不过是个整数,当代码量增大时,会使编程者难以分清哪些整数意味着数据,哪些意味着文件描述符。因此,完成的代码可读性也就会变得很差。
定义数量
如何在不同平台上定义文件描述符的数量
文件描述符极限以及可分配给进程的最大大小由资源限制来定义。这些值应当按照在WebLogicServer文档中建议的、特定于操作系统的文件描述符值来设置:
对于WLS8.1:调整硬件、操作系统和网络性能
对于WLS7.0:调整硬件、操作系统和网络性能
对于WLS6.1:调整硬件、操作系统和网络性能
Unix和Linux都有文件描述符。不过,二者的主要区别在于如何设置文件描述符的硬极限值、缺省值和配置过程。
Solaris
/usr/bin/ulimit实用程序定义允许单个进程使用的文件描述符的数量。它的最大值在rlim_fd_max中定义,在缺省情况下,它设置为65,536。只有root用户才能修改这些
内核值。
Linux
管理用户可以在etc/security/limits.conf配置文件中设置他们的文件描述符极限,如下例所示。
softnofile1024
hardnofile4096
系统级文件描述符极限还可以通过将以下三行添加到/etc/rc.d/rc.local启动脚本中来设置:
#Increasesystem-widefiledescriptorlimit.
echo4096>/proc/sys/fs/file-max
echo16384>/proc/sys/fs/inode-max
Windows
在Windows操作系统上,文件描述符被称作
文件句柄。在Windows2000服务器上,打开文件的句柄极限设置为16,384。此数量可以在
任务管理器的性能摘要中监视。
HP-UX
nfile定义打开文件的最大数量。此值通常由以下公式来确定:((NPROC*2)+1000),其中NPROC通常为:((MAXUSERS*5)+64)。如果MAXUSERS等于400,则经过计算得到此值为5128。通常可以将此值设高一些。maxfiles是每个进程的软文件极限,maxfiles_lim是每个进程的硬文件极限。
AIX
文件描述符极限在/etc/security/limits文件中设置,它的缺省值是2000。此极限可以通过ulimit命令或setrlimit子例程来更改。最大大小由OPEN_MAX常数来定义。
解决方法
对于ANSI C规范中定义的标准库的文件
I/O操作。ANSI C规范给出了一个解决方法,就是使用FILE
结构体的
指针。事实上,UNIX/Linux平台上的FILE结构体的实现中往往都是封装了文件描述符变量在其中。
在UNIX/Linux平台上,对于控制台(Console)的标准输入,标准输出,标准错误输出也对应了三个文件描述符。它们分别是0,1,2。在实际编程中,如果要操作这三个文件描述符时,建议使用头文件中定义的三个宏来表示: STDIN_FILENO, STDOUT_FILENO以及STDERR_FILENO。 与文件描述符相关的操作
文件描述符的生成
open(), open64(), creat(), creat64()
socket()
pipe()
与单一文件描述符相关的操作
read(), write()
recv(), send()
sendfile()
lseek(), lseek64()
与复数文件描述符相关的操作
select(), pselect()
poll()
与文件描述符表相关的操作
close()
dup()
fcntl (F_DUPFD)
fcntl (F_GETFD and F_SETFD)
改变进程状态的操作
mmap()
与文件加锁的操作
flock()
fcntl (F_GETLK, F_SETLK and F_SETLKW)
与套接字相关的操作
connect()
bind()
listen()
accept()
getsockname()
getpeername()
getsockopt(), setsockopt()
shutdown()
文件描述符与文件指针的区别
文件描述符:在linux系统中打开文件就会获得文件描述符,它是个很小的非负整数。每个进程在PCB(Process Control Block)中保存着一份文件描述符表,文件描述符就是这个表的索引,每个表项都有一个指向已打开文件的指针。
文件指针:C语言中使用文件指针做为I/O的句柄。文件指针指向进程用户区中的一个被称为FILE结构的数据结构。FILE结构包括一个缓冲区和一个文件描述符。而文件描述符是文件描述符表的一个索引,因此从某种意义上说文件指针就是句柄的句柄(在Windows系统上,文件描述符被称作文件句柄)。