一元线性回归
分析只有一个自变量(自变量x和因变量y)线性相关关系的方法
一元线性回归是分析只有一个自变量(自变量x和因变量y)线性相关关系的方法。一个经济指标的数值往往受许多因素影响,若其中只有一个因素是主要的,起决定性作用,则可用一元线性回归进行预测分析。
简介
回归这一术语最早来源于生物遗传学,由高尔顿(Francis Galton)引入。
回归的现代解释:回归分析是研究某一变量(因变量)与另一个或多个变量(解释变量、自变量)之间的依存关系,用解释变量的已知值或固定值来估计或预测因变量的总体平均值。
因变量:Y
自变量:X或X1,X2,…等
高尔顿的兴趣在于寻找为什么总体身高分布趋向稳定。现在我们所关心的已不是这个问题,而是想知道在已知父亲身高的情况下,儿子的身高的平均变化如何。换句话说,就是已知父亲身高来预测儿子的平均身高。
定义
一元线性回归分析预测法,是根据自变量x和因变量Y的相关关系,建立x与Y的线性回归方程进行预测的方法。由于市场现象一般是受多种因素的影响,而并不是仅仅受一个因素的影响。所以应用一元线性回归分析预测法,必须对影响市场现象的多种因素做全面分析。只有当诸多的影响因素中,确实存在一个对因变量影响作用明显高于其他因素的变量,才能将它作为自变量,应用一元相关回归分析市场预测法进行预测。
一元线性回归分析法的预测模型为:
式中,xt代表t期自变量的值;
代表t期因变量的值;
a、b代表一元线性回归方程的参数。
a、b参数由下列公式求得(用代表):
一元线性回归模型
建立模型
1、选取一元线性回归模型的变量 ;
2、绘制计算表和拟合散点图 ;
3、计算变量间的回归系数及其相关的显著性 ;
4、回归分析结果的应用 。
模型的检验
1、经济意义检验:就是根据模型中各个参数的经济含义,分析各参数的值是否与分析对象的经济含义相符;
2、回归标准差检验;
3、拟合优度检验;
4、回归系数的显著性检验
参考资料
最新修订时间:2023-10-14 14:34
目录
概述
简介
定义
参考资料