三段论推理是演绎推理中的一种简单推理判断。它包括:一个包含大项和中项的命题(大前提)、一个包含小项和中项的命题(小前提)以及一个包含小项和大项的命题(结论)三部分。三段论实际上是以一个一般性的原则(大前提)以及一个附属于一般性的原则的特殊化陈述(小前提),由此引申出一个符合一般性原则的特殊化陈述(结论)的过程。三段论是人们进行数学证明、办案、科学研究等思维时,能够得到正确结论,的科学性思维方法之一。是演绎推理中的一种正确思维的形式。
定义
简述
三段论推理是演绎推理中的一种简单推理判断。
它包含:一个一般性的原则(大前提),一个附属于前面大前提的特殊化陈述(小前提),以及由此引申出的特殊化陈述符合一般性原则的结论。
三段论推理:思维时,大脑首先用一个人为定义的内容极为明确的、囊括的范围比较大的总的原则A(简称“大前提”),再通过科学实验寻找另外一个概念小前提B,B的概念的全部内涵能够一定被包含在大前提A内、并且用文字描述的B的概念的内容时,不能人为与大前提A的内容本质完全一样(B简称小前提),然后按照小前提B如果属于大前提A范围内,那么B的性质一定与大前提的性质一样,而得到可靠而正确的判断,此思维过程叫做正确的下结论C过程——科学术语叫做“三段论推理”。
注:由此“三段论”方法判断出的新结论,还可以成为人们下一步进行研究的新起点。“三段论”思维,B必须有的坚实的“论据”,否则得到的结论C就可以说是错误的。爱因斯坦的《相对论》C的得来也是依靠“三段论推理”。凡是违背“三段论”原则的思维都是不可能得到可靠的结论。
三段论是人们进行数学证明、办案、科学研究等思维时,能够得到正确结论,的科学性思维方法之一。是演绎推理中的一种正确思维的形式。
举例
1、思维过程比喻:桌子上有碗——全家的碗一定在桌子上——红葡萄一定在碗里——红葡萄一定在桌子上,不需要开飞机满世界寻找。
2、(如图1)生物包括所有的动物和不吃肉的动物等等,动物都属于生物A,其中,只有一部分动物吃肉,老虎属于吃肉动物(最小的圈);所以看见新的圈被大的全包括“得出”老虎属于生物的结论。
上面的三段论推理,“所有动物”是连接大、小前提的中项;“有些生物吃肉”是出现在大前提中又在结论中做
谓项的“大项”;“老虎”是出现在小前提中又在结论中做主项的“小项”。(习惯上,不用ABC而用“P”表示“大项”,用“M”表示“中项”,用“S”表示“小项”。)
省略式
从思维过程来看,任何“三段论”都必须具有大、小前提和结论,缺少任何一部分就无法构成三段论推理。但在具体的语言表述中,无论是说话还是写文章,常把三段论中的某些部分省去不说。但是“省去不说”不等于可“废除”。因为“大前提,小前提,结论”三者原则上不能够省略任何一个。下面为三段省略式的几种形式和举例:
省略大前提
①你是经济学院的学生,你应当学好经济理论。
例①省略了大前提“凡是经济学院的学生都应该学好经济理论”。
②改革是新事物,当然免不了要遇到前进中的困难。
例②省略了大前提“凡是新事物都免不了遇到前进中的困难”。
省略小前提
①企业都应该提高经济效益,国营企业也不例外。
例①省略了小前提“国营企业也是企业”。恢复其完整式是:“企业都应该提高经济效益,国营企业也是企业,所以,国营企业应该提高经济效益。”
②这部连续剧不是优秀作品,因为优秀作品是思想性与艺术性相结合的作品。
例②省略的小前提是“这部连续剧不是思想性与艺术性相结合的作品”。恢复其完整式是:“优秀作品都是思想性与艺术性相结合的作品,这部连续剧不是思想性与艺术性相结合的作品,所以这部连续剧不是优秀作品。”
省略结论
①业余办学形式是群众所欢迎的,函授教育就是一种业余办学形式。
例①省略的结论是“函授教育形式是群众所欢迎的”。
②所有的人都免不了犯错误,你也是人嘛。
例②省略的结论是“你也免不了犯错误”。
公理
“公理”的概念,具有明显的直观真理性,古时往往是不证自明,例如“两点之间线段最短”D(后人可用“三角形任何一边小于另外两边之和”和极限原理证明成立)公理的内部前后要有一致性。公理的现代含义,不要求公理具有明显的直观真理性,不一定是真理(例如霸占人类头脑1300多年的“地心说”是历史上的公理)。人类也不追求公理能够不证自明,但是公理总是被严格要求其内部必须有严谨的逻辑性、一致性、无矛盾性。才能够成为终极真理D。防止公理有可能是错误的。公理概念与真理不一样。
三段论:如果一类对象A的全部内涵可以知道,那么,它的小类B,即A包含的部分对象B,也必然有A的全部内涵;我们想否定应该内容时:如果某一类对象A的全部都不是B,E如果属于B,则E也必然不属于A。也就是说,如果我们对某类对象A的全部,经过研究都有所断定是否正确?那么,对A包含的部分
对象B也就可以断定了(断定B“是”或者“不是”)。
相关概念
三段论的格
按照语言描述的顺序决定的大项、小项、中项在三段论中不同的位置分布,三段论可分为以下四个格:
可以看出,在这四个格中,结论中的主项和谓项的位置(在下面)是固定的。这些格的主要区别是,前提中的中项的位置不同。
三段论的式
同一格的三段论也有一定的差异,即它们的前提和结论中所涉及的直言
命题的量词(全称、特称)和质(肯定、否定)是不同的,也就是说它们的“式”是不同的。
例如:
1、所有的偶蹄目动物都是脊椎动物,牛是偶蹄目动物;所以牛都是脊椎动物。(第一格AAA式)
2、所有的偶蹄目动物都不是昆虫,牛是偶蹄目动物;所以牛都不是昆虫。(第一格EAE式)
3、所有商品都是用来交换的,所有封建地租都不是用来交换的;所以所有封建地租都不是商品。(第二格AEE式)
4、鸵鸟不会飞,鸵鸟是鸟;所以一些鸟不会飞。(第三格EAO式)
5、有些不会飞的动物是鸵鸟,鸵鸟是鸟;所以有的鸟是不会飞的动物。(第四格IAI式)
三段论的可能式和有效式:
在三段论的每格中,A、E、I、O四种判断,都可以分别作为大、小前提和结论,其组合数量是:4×4×4=64。因此,就其可能性而言,每格有64个式。“三段论”共有四个格,因此,三段论的可能式共有64×4=256个。
但是,三段论的可能式,并非都是有效的。事实上,其大部分是无效的。
对于三段论的所有可能式,都可以依据一般规则或各格的具体规则,判定它是否有效。经过筛选,三段论所有的可能式中,共有如下24个有效式:
验证一个三段论正确的方法是:一个三段论是有效的,必须实现,当且仅当它是这个24个式中的一个。
上述24个有效式中,有5个带括号,称为弱式。所谓弱式,是指“本来可以得出全称的结论,但却只得出了特称的结论”。可以不把弱式看成是独立的有效式。
这样,如果不算5个弱式,三段论共有19个“有效式”。
三段论的各个有效式,我们不必要一个个地熟记。其实,判定三段论是否有效,你依据三段论的一般规则及各格的具体规则就可以正确判断了。
三段论的省略式:
三段论包括大前提、小前提、结论三个部分。从逻辑结构上说,这三部分缺一不可。但是,三段论在日常语言的表达中,能常省略其中的某个部分。
在日常语言的表达中省略了大前提或者小前提或者结论的三段论,称为三段论的省略式,也可以称为“省略三段论”。
“省略三段论”所省略的描述性内容,只是语言表达而已,而不能省略其逻辑结构。也就是说,“省略三段论”其所省略的部分,其实在逻辑结构上,被省略的仍是默认成为推理的必要部分,只不过人们没有把它在语言上表达出来而已。(写文章最好是不要省略,以免别人看不懂)
省略三段论有三种形式:
第一,省略大前提:被省略的大前提,它的内容往往是人类已经获得的普遍默认、承认的真理。(例如太阳从东方升起;动物总是要死亡的)
第二,省略小前提:省略的小前提往往是“不言而喻的事实”。(坚实的证据)
第三,省略结论:省略的结论。(如果结论显而易见,不容易误解,有人认为不说出结论往往比说出结论“更有力”。但是科学研究不允许含含糊糊。《逻辑学》思维下结论,不是文学作品。所以还是不省略结论,为好。)
三段论省略式的恢复:
三段论省略式的必要性和长处,已如上述。
但三段论省略式也有弱点。一些前提虚假或推理错误的三段论,经省略后,很可能使这些毛病掩盖起来,不易察觉。(诡辩者往往是有这些办法搞理论上的浑水摸鱼)。
因此,在判定“省略三段论”的有效性时,就需要它们先把省略部分补充进去,把“省略三段论”恢复成经典完整的形式。
“省略三段论”的恢复,有以下步骤:
1、确定结论是否被省略?在下结论前,通常以“因此”、“所以”这样的联词。根据是否有这样的联词,你可容易断定结论是否被省略了。
2、如果结论没有被别人省略,那么,根据结论,就可以确定大、小项。如果大项没有在省略式的前提中出现,则说明省略的是大前提;如果小项没有在前提中出现,则是省略的是小前提。
3、把省略的部分补充进去,并进行适当的整理,就可得到了“省略三段论”的完整形式。
在恢复省略三段论时,要注意两点:
第一,不可违反“省略三段论”的原意。一般地说,“省略三段论”的被省略部分的内容,是人们显而易见的,才可以省略。要按照“省略三段论”明显的原意进行恢复。不能为“避免省略三段论恢复后出现形式错误”而违反它的原意进行错误的恢复。
第二,如果对“省略三段论”原意的理解存在歧义,那么,你在恢复时所补充的判断内容,应该力求是真实的。如果虽然不违背原意去补充一个真实的判断作为前提或结论,却错误地补充了一个虚假的判断,这就失去了恢复“省略三段论”的意义。是帮倒忙。
三段论的有效性
所谓“推理的有效性”,就是通过推理,从真的前提出发思维(实事求是的内涵)非常重要,因为必然只能得到真的可靠的结论。如果一个推理形式是从“真前提”推出假结论,那么这个推理形式就是无效的。(简称“推不出”)但是人们有时不知道这是假的结论,以为这就是“真理”。
传统逻辑中,三段论的256个式中有如下24个有效式,其它的式都是无效的。
第一格:AAA,EAE,AII,EIO;AAI,EAO。
第二格:AEE,EAE,AOO,EIO;AEO,EAO。
第三格:AII,IAI,OAO,EIO;AAI,EAO。
第四格:AEE,IAI,EIO;AEO,EAO,AAI。
注意:分号前是无条件有效式,分号后是有条件有效式,下面会讲解。
传统逻辑假定结论的主项(小项)不是空的,也就是说这一项所表达的集合的元素是存在的,这个假定保证了以上四个格中分号后面的9个式是有效的,分号前面15个式的有效性不受这个假定的影响。可以看到,分号后的9个有效式都有一个特点,那就是结论是特称的,而前提都是全称的。
按照
布尔的观点,全称命题不蕴含存在,也就是说“不能只用全称命题推出特称命题”(一般而言,特称命题都被认为是有存在含义的,“有的A是B”的意思是“存在一个A且那个A是B”)。例如“所有汽车都是交通工具”不蕴含“汽车存在”的意思,所以他认为三段论只有分号前的15个有效式。
而
亚里士多德认为在主项实际存在时全称命题就蕴含存在,反之则不蕴含。例如“所有汽车都是交通工具”蕴含汽车存在,而“所有独角兽都是只有一只角的动物”不蕴含独角兽存在,所以他认为在小项(即上面的“汽车”、“独角兽)不空时,分号后的9个式也是有效的。我们也可以说,分号前的15个有效式是无条件有效的,后9个有效式是有条件有效的。
不难看出,第一格的有效式的结论含有AEIO四种形式,第二格只有否定的E、O两种形式,第三格只有特称的I、O两种形式。第一格的有效式的结论既含有直言命题的全部形式,又比较符合日常表达习惯,所以它是比较重要的,后面我们可以看到,三段论的有效式都可以用第一格的前四个式证明。
规则
人们根据
三段论公理,总结出三段论的一般推理规则,使之成为判定三段论是否有效的标准。三段论的一般规则共有七条,其中前四条是基本规则,后三条是导出规则。在这七条规则中,前三条是关于词项的规则;后四条是关于前提与结论的规则。
一般规则如下:
(1)一个正确的三段论,有并且只有三个不同的项。
三段论的实质就是借助于一个共同项即中项作为媒介,使大小项发生逻辑关系,从而导出结论的。如果一个三段论只有两个词项或四个词项,那么大小项就找不到一个联系的共同项,因而无从确定大小项之间的关系。因此,一个正确的三段论仅允许有三个不同的词项。
如果仅有两个词项(A是B,所以B是A),就造成了无意义的
同语反复,(循环论证)不能推出新结论。也不能犯“四词项”逻辑错误(a是b,c是d,所以a是d)。
(2)三段论的中项至少要周延一次。(为了避免出现逻辑性错误)
中项是联系大小前提的媒介。如果中项在“前提”中一次也没有周延,那么,中项在大、小前提中将会出现部分
外延与大项相联系,并且部分外延与小项相联系,这样大、小项的关系就无法确定。
中项不能在大、小前提中两次不周延。若中项在大小前提中周延一次或周延两次,情况又如何呢?如果中项周延一次,那么就会有一个中项的全部外延和大项或小项发生了肯定或否定的关系,从而产生媒介作用,使大小前提发生联系推出必然结论。
正确思维的例子:
①知识分子B属于劳动者A(更大的范围),李教授T是知识分子B,所以李教授T属于劳动者A。
②知识分子B不是剥削者Z,李教授T是知识分子B,所以李教授T不是剥削者。
③凡作案者D都有作案动机H,某人W没有作案动机H;所以某人W不是作案者D。
上述例子都是仅有一个中项是周延的,它们都能推出必然结论,大小前提与结论的联系都是必然的。
如果中项周延两次,只要大小前提不都是否定的,那么,中项的全部外延就会分别与大项、小项发生联系,起到联结大小项的作用,从而使三段论推出必然的结论。
综上所述,一个正确的三段论(只要两个前提不都是否定的),它的中项至少应周延一次。
(3)在前提中不周延的词项,在结论中不得周延。
本条规则与性质判断直接换位推理的规则相同。如果前提中的大项或小项是不周延的,那么它们的大项或小项的外延就没有被全部断定,若结论中的大项或小项变为周延的,那么就等于断定了大项或小项的全部外延。这样,造成了前后不一致,所推出的结论当然是不可靠的,其结论也不是由前提必然推出的。违反这条规则,所犯的逻辑错误称为“
大项不当扩大”或“小项不当扩大”。
例子:[注意,A的内涵大于B,例如A包括B、C、D、E、......]
①先进工作者B都是工作有成绩A的人,老王不是先进工作者B,所以老王不是工作有成绩的人。(错)
②金属B都是导电体A,橡胶不是金属B,所以橡胶不是导电体A。(错)
③金属B都是
导电体A,金属B都不是绝缘体E,所以,所有绝缘体E都不是导电体。(错)
④某人A是教授B,某人A是
北京大学C的,所以,北京大学的都是教授。(错)(职位与位置概念不同)
上面的例子①②③所犯的逻辑错误都是“
大项不当扩大”。例④所犯的逻辑错误是“小项不当扩大”。从上面的例子来看,结论有假有真,这说明违反本条规则所推出的结论是不可靠的,也就是说,从前提推出的结论不是必然得出的,而是或然的。我们不能因为有例②例③这种能够推出真实结论的推理,就认为例②例③是有效性推理。能够偶然推出真实结论的推理形式并非是有效的,凡是有效推理的逻辑形式,代入任何推理内容,只要前提真实,就一定能够推出真实的结论。
(4)两个否定前提推不出结论。
如果两个前提都是否定的,那么中项同大小项发生排斥。这样,中项就无法起到联结大小前提的作用,小项同大项的关系也就无法确定,因而推不出结论。下面举两个例子说明该规则。
①铜(M)都不是绝缘体(P),而铁(S)不是铜(M),所以铁(S)不是绝缘体(P)。
②羊(M)不是肉食动物(P),而虎(S)不是羊(M),所以虎(S)不是肉食动物(P)。
上面两例,前提都是真实的,但由于形式无效,所以推出的结论有或然性。
(5)前提有一个是否定的,其结论必是否定的;若结论是否定的,则前提必有一个是否定的。
该规则是导出规则。若一个三段论的大前提是否定的,那么,中项与大项这两者的外延就必然是互相排斥的,据规则(4)“两个否定前提不能推出结论”,这样,小前提就只能是肯定的。若小前提是肯定的,那么,小前提中的中项和小项的外延就必然具有
相容关系。这样,通过中项的媒介作用,小项就会与大项的外延相排斥,从而推出必然性结论。同理,若小前提是否定的,那么,中项与小项的外延相排斥;据规则(4),大前提只能是肯定的,则中项与大项的外延就必然具有相容关系。
从另一个角度看,若前提都是肯定的,而结论是否定的,那么,结论的小项和大项的关系,或是真包含关系,或是
交叉关系,或是
全异关系,而实际上大小肯定前提通过中项联结,小项和大项的外延关系可能是全同关系,或真包含于关系,或真包含关系,或交叉关系,这样在前提中蕴涵的小项与大项的关系同结论中的小项与大项的关系存在着差异,从而使结论失去可靠性,其逻辑形式也必然是无效的。
(6)两个特称前提推不出结论。
如果两个前提都是
特称判断,对于三段论来说,共有四种组合情况。即II、OO、IO、OI。下面分别进行分析。
如果两个前提是II式,则两个前提中的主谓项均是不周延的。这样,不论中项位于两个前提的主项还是
谓项,都不能够周延,必然违反规则(2),其推理形式也是无效式。
如果两个前提是OO式,则违反了规则(4)。因此其推理形式也是无效式。
如果两个前提是IO式,则违反规则(3)。因为大项无论是I判断的主项还是谓项,都不可能是周延的,而据规则(5)结论应是否定的,这样结论的大项是周延的,从而就一定违反规则(3),其推理式也是无效式。
如果两个前提是OI式,则或违反规则(2),或违反规则(3)。若中项是大前提O判断的主项,同时小前提中的中项或是其主项或是谓项,则两个中项在大小前提中都不周延,必然违反规则(2)。若大项P是大前提O判断的主项,而据规则(5)结论必是否定的,这样大项P在大前提中不周延而在结论中周延,就必然违反规则(3)。(以上理解时最好通过“桌子、碗、菜”的关系寻找其容易理解的比喻方式去判断)
所以,大小前提若都是特称的,(理解,概念包含范围过于小就不能演绎)则必然是无效式。
(7)前提中有一个是特称的,结论必须也是特称的。
根据规则(6),两个特称前提推不出结论,所以,一个正确三段论,前提若有一个是特称,则另一个前提就必然是全称的。这样有一个前提是特称的三段论,其大小前提的组合则有四种类型八种形式:
AI——IA
AO——OA
EI——IE
EO——OE
上述四组中的“EO——OE”因两个前提都是否定的,违反规则(4),所以该组可以直接排除,这样,可分析的就剩下三组。
如果大小前提是由AI组成,不管它们谁是大小前提,那么它们的周延项只有A判断的
主项,为了遵守规则(2),中项必须位于A判断的主项,这样大小项就位于A判断的
谓项和I判断的主谓项,并且都是不周延的。若在此情况下,结论的小项周延,必违反规则(3),所以,以AI为前提的三段论,其结论的小项只能是特称的。
如果大小前提由AO组成,不管它们谁是大小前提,那么它们的周延项有A判断的主项和O判断的谓项。根据规则(5),结论只能是
否定判断,若结论是否定判断,则大项在结论中是周延的,为了遵守规则(3),大项只能在A判断主项或O判断的谓项的位置上,为了遵守规则(2),中项也只能在A判断主项或O判断的谓项的位置上,这样,小项只能在不周延的项即A判断的谓项或O判断的主项的位置上,若结论的小项是全称的,就必然违反规则(3),所以结论的小项只能是特称的。
如果大小前提是IE,那么,由于大前提I主谓项都不周延,而根据规则(5),其结论又只能是否定判断,即大项在结论中是周延的,这样只要大项在I判断
主项或谓项的位置上,就必然违反规则(3),所以IE为前提不能成立。若大小前提是EI,那么其周延项有E判断主项和
谓项,为了不违反规则(2),保证中项周延一次,为了不违反规则(3),保证大项在结论中不扩大,小项只能位于I判断主项或谓项,这样,若结论的小项是周延的就必违反规则(3)。所以以EI为前提,其结论也只能是
特称判断。
三段论有效性的证明
韦恩图法
韦恩图法是判断三段论有效性的最终的也是最直接的方法。如图2所示,我们用三个圆来代表大项、小项和中项。中项所代表的集合是最上方的圆,大项是右下角的圆,小项是左下角的圆。画这些圆时,应当确保图2中的7个区域被明显的区分。
为了判定一个三段论的有效性,我们要先从语义中理解概念范围,提取推理形式,然后将前提按一定顺序输入图中,最后检查结论是否正确,为了正确的输入前提,需要遵照一定的规则:
1、所谓荫蔽,指的是被荫蔽的区域内不含任何元素,一般用斜线或阴影表示。
2、画“X”表示所画的区域中至少存在一个元素。
3、全称的前提先输入,特称的前提后输入。如果两个前提都是全称的,先输入哪一个都可以。
4、要画x的区域一般都被分为两部分,若有一个部分被荫蔽,x要画在未被荫蔽的部分。若没有区域被荫蔽,x要画在两个区域的交线上。
还要注意以下几点:
1、所有标记(画x或荫蔽)都是对前提而言,没有标记,是为下结论所做。
2、输入“前提”时只需关注该前提所涉及的两个词项的圆,另一个圆只需极小的关注。
3、荫蔽区域时一定要荫蔽相关区域的“全部”。
4、特称结论“有的S是P”的含义是:至少存在一个S并且这个S是P。“有的S不是P”也一样。
5、未被标记的区域的情况是未知的,可能存在元素也可能不存元素,要根据实际情况而定。
另外一点,对于分号前和分号后的式子,验证方法略有不同。
读者可以在下面的例子中再仔细体会。
例一,验证第一格AAA式即“所有M是P,所有S是M,所以所有S是P”的有效性,如图3所示。
第一步:因为“所有”M都是P,所以“只属于”M而不属于P的事物是不存在的,所以我们就将区域1和2荫蔽(可不标注区域序号,这只是为了方便逐步讲解)。
第二步:因为“所有”S都属于M,所以“只属于S而不属于M的事物是不存在的”,所以我们就将区域5和6荫蔽。
第三步:检查结论,发现S只剩下区域3,而区域3中的元素也必定属于P,所以结论“所有S是P”成立。
第四步:得出结论,该三段论是有效的。
例二,验证第三格IAI式即“有的M是P,所有M是S,所以有的S是P”的有效性,如图4所示。
第一步:先输入全称的前提“所有M是S”,荫蔽区域1、4。
第二步:再输入特称的前提“有的M是P”,这句话意味着在M和P的共有区域或者说交集中至少有一个元素,即区域3、4的并集中至少存在一个元素,但4已被荫蔽,所以将x画在区域3中。
第三步:检查结论,“有的S是P”说明S和P的交集中即区域3、6的并集中至少有一个元素,而x恰好在区域3中,结论成立。
第四步:得出结论,该三段论是有效的。
再来看一个分号后的例子。
例三,证明第一格EAO式即“所有M都不是P,所有S都是M,所以有的S不是P”,如图5所示。
第一步:输入“所有M都不是P”,即M和P的交集不含任何元素,荫蔽区域3、4。
第二步:输入“所有S都是M”,荫蔽区域5、6。
第三步:检查结论,“有的S不是P”意味着存在一个x并且那个x是S而不是P,即区域2、5的并集中存在一个x,检查图形却没有这个x。因此该三段论按布尔的观点是无效的,我们继续论证该三段论在
亚里士多德的观点下是有效的。
第四步,检查有无只剩一个区域没有被荫蔽的圆,若没有则该三段论是无效的。发现S只剩一个区域2未被荫蔽,因此在区域2中画上一个带圆圈的叉。
第五步,再次检查结论,得到了所需的x。这时,若S是现实存在的项,三段论就是有效的,若S不是现实存在的项,例如“当今存活的霸王龙”等等,那么三段论就是无效的。
注意,有时会出现一个以上的只剩一个区域没有被荫蔽的圆,这时只需将带圈的x画在S的范围内就可以了。第二格的AEO式和EAO式就是如此。
最后再举一个被证明为无效的例子。
例四,验证第一格IAI式即“有的M是P,所有S是M,所以有的S是P”的有效性。
如图6所示。
第一步:先输入全称的前提“所有S是M”,荫蔽区域5、6。
第二步:再输入特称的前提“有的M是P”,即区域3、4的并集中存在一个x,但这两个区域都未被荫蔽,所以将x画在区域3、4的交线上。
第三步:检查结论,“有的S是P”说明S和P的交集中至少存在一个x,即区域3、6的并集中存在一个x,但我们所画的x却不知道到底是在区域3中还是区域4中,两者都有可能。所以当x在区域4中时,前提真而结论假。同时又找不到只剩一个区域未被荫蔽的圆,因此该三段论是无效的。
最后给出24个有效式的韦恩图证明,如图7所示。
三段论还原法
除了运用韦恩图法,也可以通过运用一些规则,将欲证的三段论化为第一格分号前的四个有效式,从而证明三段论的有效性。
规则:(为了输入方便,否定用“~”表示)。
规则Ⅰ1:MAP,SAM,|-SAP(“|-”表示“必然地得出”)。
规则Ⅰ2:MEP,SAM,|-SEP。
规则Ⅰ3:MAP,SIM,|-SIP。
规则Ⅰ4:MEP,SIM,|-SOP。
换位规则:SEP,|-PES。
换位规则:SIP,|-PIS。
差等规则:SAP,|-SIP。
差等规则:SEP,|-SOP。
矛盾规则:SAP,|-~(SOP)。
矛盾规则:SEP,|-~(SIP)。
前四个规则是第一格分号前的四个有效式,后面的规则是和
直言命题有关的规则。
例一:证明第二格AEE式
∴SEP
(1)PAM 前提。
(2)SEM 前提。
(3)MES (2),换位规则[这种写法是说“对(2)使用换位规则”,下同]。
(4)PES (3),(1),Ⅰ2。
(5)SEP (4),换位规则。
这就得到了所需的结论。
例二:证明第一格EAO式
∴SOP
(1)MEP 前提。
(2)SAM 前提。
(3)SEP (1),(2),Ⅰ2。
(4)SOP (3),差等规则(使用差等规则证明的都是分号后的有效式,要确保S项的存在性)。
运用形式证明,可以将欲证的三段论化为第一格的前四个有效式,这种证明方法叫做三段论还原法。
备注:为了正确的运用三段论,必须要判断它的有效性,人们记住全部24种有效形式是比较困难的,可以利用多种方式,证明三段论的有效性。