两两互质
数学术语
两个数的公约数只有一,这样的数叫互质数。两两互质,就是几个数的公约数只有一。
概念
两两互质是指一组数,其中任意两个都互质,比如4,5,9,4和5互质,4和9互质,5和9互质,那么4,5,9就叫做两两互质。需要注意的是两两互质是任意两个都互质,而互质是整体的互质。如果几个数两两互质,那么他们的最小公倍数是他们的乘积。
小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。” 这里所说的“两个数”是指自然数。 “公约数只有 1”,不能误说成“没有公约数。”
判别方法
(1)两个不相同质数一定是互质数。 例如,2与7、13与19。
(2)一个质数如果不能整除另一个合数,这两个数为互质数。 例如,3与10、5与 26。
(3)1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。
(4)相邻的两个自然数是互质数。如 15与 16。
(5)相邻的两个奇数是互质数。如 49与 51。
(6)大数是质数的两个数是互质数。如97与88。
(7)小数是质数,大数不是小数的倍数的两个数是互质数。如 7和 16。
(8)两个数都是合数(二数差又较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。 如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。
(9)两个数都是合数(二数差较小),这两个数的差的所有质因数都不是小数的约数,这两个数是互质数。如85和78。 85-78=7,7不是78的约数,这两个数是互质数。
(10)两个数都是合数,大数除以小数的余数(不为“0”且大于“ 1”)的所有质因数,都不是小数的约数,这两个数是互质数。如 462与 221 462÷221=2……20, 20=2×2×5。 2、5都不是221的约数,这两个数是互质数。
(11)减除法。如255与182。 255-182=73,观察知 73182。 182-(73×2)=36,显然 3673。 73-(36×2)=1, (255,182)=1。 所以这两个数是互质数。 三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、4。另一种不是两两互质的。如6、8、9。
参考资料
最新修订时间:2023-05-04 18:03
目录
概述
概念
判别方法
参考资料