主元分析法
科技术语
主元分析法(PCA)是基于多元统计过程控制故障诊断技术的核心,是基于原始数据空间,通过构造一组新的潜隐变量来降低原始数据空间的维数,再从新的映射空间抽取主要变化信息,提取统计特征,从而构成对原始数据空间特性的理解。
简介
新的映射空间的变量由原始数据变量的线性组合构成,从而大大降低了投影空间的维数。由于投影空间统计特征向量彼此正交,则消除了变量间的关联性,简化了原始过程特性分析的复杂程度。
基本思路
主元分析法的基本思路是:寻找一组新变量来代替原变量,新变量是原变量的线性组合。从优化的角度看,新变量的个数要比原变量少,并且最大限度地携带原变量的有用信息,且新变量之间互不相关。其内容包括主元的定义和获取,以及通过主元的数据重构。
定义
假设一个要研究的系统仅包含两个变量 x1 , x2 。将两个变量的样本点表示在一个平面图上,可以看出所有的样本点集中在一个扁型的椭圆区域内。因为样本点之间的差异显然是由于 x1 , x2 的变化而引起的。我们可以看出在沿着椭圆横轴的方向上( y1 )的变动较大,而纵轴方向上( y2 )的变动较小。这说明了样本点的主要变动都体现横轴方向上,比如 85%以上,那么这时就可以将 y 2忽略而只考虑y1 。这样两个变量就可以简化为一个变量了。我们称 y1 , y 2分别为 x1 , x2 的第一主元和第二主元。一般情况下,如果样本有 p 个变量,若样本之间的差异能由 p 个变量的 K 个(K<p)个主元成分来概括,那么就能用 K 个主元来代替 p 个变量。
主元的分向量
主元分析中数据总体的协方差阵往往是未知的,这需要利用过程的正常运行数据进行估计。假设采集得到过程数据样本为 X ∈ R n ×p,其中 n是样本的数量,p 为过程变量的个数。为了避免变量的不同量纲的影响,需首先对数据进行标准化处理,即将各个变量转化为均值为 0,方差为 1 的数据。
确定方法
在主元个数的选择上,有两种比较普遍的方法,一种是主元回归检验法,一种是主元贡献率累积和百分比法(CPV)。
检测统计量
检测统计
从统计的角度讲,要检测数据中是否包含过程的故障信息,可以通过建立统计量进行假设检验,判断过程数据是否背离了主元模型。通常的方法是主元子空间建立 Hotelling T2 统计量进行统计检验;在残差子空间中建立 Q 统计量进行统计检测。
参考资料
最新修订时间:2024-05-21 16:14
目录
概述
简介
基本思路
定义
参考资料