伴随勒让德多项式
数学上对常微分方程解函数序列的称呼
伴随勒让德多项式(Associated Legendre polynomials,又译缔合勒让德多项式、连带勒让德多项式、关联勒让德多项式)是数学上对常微分方程解函数序列的称呼,在数学和理论物理学中有重要的意义。
定义
数学上对如下形式常微分方程解函数序列:
该方程是在球坐标系下求解拉普拉斯方程时得到的,因上述方程仅当 和 均为整数且满足 时,才在区间 [−1, 1] 上有非奇异解,所以通常把 和 均为整数时方程的解称为伴随勒让德多项式;把 和 为一般实数或复数时方程的解称为广义勒让德函数(generalized Legendre functions)。
当 为整数时,方程的解即为一般的勒让德多项式。
注意当 m 为奇数时,连带勒让德多项式并不是多项式
正交性
与勒让德多项式一样,伴随勒让德多项式在区间 [-1,1] 上也满足正交性。
这是因为,与勒让德方程一样,伴随勒让德方程也是施图姆-刘维尔型的:
正交性的另一种表述如下,它与下面提到的球谐函数有关。
与勒让德多项式的关系
伴随勒让德多项式可以由勒让德多项式求m次导得到:
等号右边的上标 (m) 表示求m次导。
与超几何函数的关系
伴随勒让德函数(即 l, m 不一定要是整数)可以用高斯超几何函数表达为:
注意 μ 为正整数 m 时 1-μ 是伽玛函数的奇点,此时等号右边的式子应该理解为当 μ 趋于 m 时的极限。
负数阶连带勒让德多项式
显然伴随勒让德方程在变换m→-m下保持不变,传统上习惯定义负数阶伴随勒让德多项式为:
容易验证,这样定义的伴随勒让德多项式能够使得上面的正交关系可以推广到 m 为负数的情况。
注意在个别文献(如图1)中会直接取
与球谐函数的关系
球谐函数球坐标下三维空间拉普拉斯方程的角度部分的解,构成一组完备的基组,有着重要的意义。采用本文中定义的伴随勒让德多项式的表达式,球谐函数可以表达为:
由伴随勒让德多项式的正交关系可以直接得到球谐函数的正交关系:
式中 dΩ 是立体角元。
参考资料
最新修订时间:2022-08-26 11:03
目录
概述
定义
正交性
参考资料