体波
由震源振动直接产生在地球内部传播的地震波
体波是由震源振动直接产生在地球内部传播的地震波。体波分为纵波(P)和横波(S)。地震波在地下的反射和折射蕴涵着丰富的信息。
分类
纵波
纵波是通过介质的体积变化即挤压和拉伸传播的,在固液气态介质中均可传播,速度最快。纵波是质点的振动方向与传播方向同轴的波。如敲锣时,锣的振动方向与波的传播方向就是一致的,所以声波是纵波。纵波是波动的一种(波动分为横波和纵波)。亦称“疏密波”,纵波的传播过程是沿着波前进的方向出现疏密不同的部分。实质上,纵波的传播是由于介质中各体元发生压缩和拉伸的变形,并产生使体元回复原状的纵向弹性力而实现的。因此纵波只能在拉伸压缩的弹性的介质中传播,一般的固体、液体、气体都具有拉伸和压缩弹性,所以它们都能传递纵波。声波在空气里传播时,由于空气微粒的震动方向与波的传播方向一致,所以是纵波。
横波
横波的震动方向与传播方向垂直,通过介质的形态变化而实现,又称作剪切波,只在固体中传播,速度较慢。横波的特点是质点的振动方向与的传播方向相互垂直。在横波中波长通常是指相邻两个波峰或波谷之间的距离。电磁波就是横波。
所有质点的起振方向都相同。近点先质点,远点后振动,近点振动超前于远点。相等时间内传播相等距离:波形向前推移,波的前端波形保持不变5。而质点只在自己的平衡位置附近振动,并不“随波逐流”。
波长:在波动中振动相位总是相同的两个相邻质点间的距离。对于横波,相邻的两个波峰或相邻的两个波谷之间的距离等于一个波长。
频率:波的频率就是波源的振动频率,也是所有质点的振动频率。
波速:波在均匀介质中匀速传播的速率只与介质有关,而与频率无关。注意波速与质点振动速度不是同一概念。
凡是波传到的地方,每个质点都在自己的平衡位置附近振动。由于波以有限的速度向前传播,所以后开始振动的质点比先开始振动的质点在步调上要落后一段时间,即存在一个位相差。横波的传播,在外表上形成一种“波浪起伏”,即形成波峰和波谷,传播的只是振动状态,媒质的质点并不随波前进。实质上,横波的传播是由于媒质内部发生剪切变形(即是媒质各层之间发生平行于这些层的相对移动)并产生使体元恢复原状的剪切弹性力而实现的。否则一个体元的振动,不会牵动附近体元也动起来,离开平衡位置的体元,也不会在弹性力的作用下回到平衡位置。
固体有切变弹性,所以在固体中能传播横波,液体气体没有切变弹性,因此只能传播纵波,而不能传播横波。液体表面形成的水波是由于重力和表面张力作用而形成的,表面每个质点振动的方向又不和波的传播方向保持垂直,严格说,在水表面的水波并不属于横波的范畴,因为水波与地震波都是既有横波又有纵波的复杂类型的机械波
机械波的传播需要介质,电磁波的传播不需要介质
描述波的物理量:波长λ、波速v、频率f
遵循规律:v=λ f
地震波
定义
地震波(seismic wave)是由地震震源向四处传播的振动,指从震源产生向四周辐射的弹性波。按传播方式可分为纵波(P波)、横波(S波)(纵波和横波均属于体波)和面波(L波)三种类型。地震发生时,震源区的介质发生急速的破裂和运动,这种扰动构成一个波源。由于地球介质的连续性,这种波动就向地球内部及表层各处传播开去,形成了连续介质中的弹性波
地震学的主要内容之一就是研究地震波所带来的信息。地震波是一种机械运动的传布,产生于地球介质的弹性。它的性质和声波很接近,因此又称地声波。但普通的声波在流体中传播,而地震波是在地球介质中传播,所以要复杂得多,在计算上地震波和光波有些相似之处。波动光学在短波的情况下可以过渡到几何光学,从而简化了计算;同样地,在一定条件下地震波的概念可以用地震射线来代替而形成了几何地震学。不过光波只是横波,地震波却纵、横两部分都有,所以在具体的计算中,地震波要复杂得多。
分类
地震波(seismic wave)是由地震震源向四处传播的振动,指从震源产生向四周辐射的弹性波。按传播方式可分为纵波(P波)、横波(S波)(纵波和横波均属于体波)和面波(L波)三种类型。地震发生时,震源区的介质发生急速的破裂和运动,这种扰动构成一个波源。由于地球介质的连续性,这种波动就向地球内部及表层各处传播开去,形成了连续介质中的弹性波
地震学的主要内容之一就是研究地震波所带来的信息。地震波是一种机械运动的传布,产生于地球介质的弹性。它的性质和声波很接近,因此又称地声波。但普通的声波在流体中传播,而地震波是在地球介质中传播,所以要复杂得多,在计算上地震波和光波有些相似之处。波动光学在短波的情况下可以过渡到几何光学,从而简化了计算;同样地,在一定条件下地震波的概念可以用地震射线来代替而形成了几何地震学。不过光波只是横波,地震波却纵、横两部分都有,所以在具体的计算中,地震波要复杂得多。
参考资料
最新修订时间:2024-05-03 17:01
目录
概述
分类
参考资料