修正值是指“用
代数方法与未修正测量结果相加,以补偿其系统误差的值”。修正值等于负的系统误差估计值。
含有误差的测量结果,加上修正值后就可能补偿或减少误差的影响。由于
系统误差不能完全获知,因此这种补偿并不完全。修正值等于负的系统误差,这就是说加上某个修正值,就像扣掉某个系统误差,其效果是一样的,只是人们考虑问题的出发点不同而已:
在
量值溯源和
量值传递中,常常采用这种加修正值的直观的办法。用高一个等级的
计量标准来校准或
检定测量仪器,其主要内容之一就是要获得准确的修正值。例如:用频率为fs的标准振荡器作为信号源,测得某台送检的频率计的
示值为f,则
示值误差Δ为f-fs。所以,在今后使用这台频率计时应扣掉这个误差,即加上修正值(-Δ),可得f+(-Δ),这样就与fs一致了。换言之,
系统误差可以用适当的修正值来估计并予以补偿。但应强调指出:由于系统误差不能完全获知,因此这种补偿是不完全的,也即修正值本身就含有
不确定度。当测量结果以代数和方式与修正值相加之后,其系统误差之模会比修正前的要小,但不可能为零,也即修正值只能对系统误差进行有限程度的补偿。
含有系统误差的测量结果,乘以修正
因数后就可以补偿或减少误差的影响。比方由于等臂天平的
不等臂误差,不等臂天平的臂比误差,线性标尺分度时的倍数误差,以及测量电桥臂的不等称误差所带来的测量结果中的系统误差,均可以通过乘一个修正因数得以补偿。但是,由于系统误差并不能完全获知,因而这种补偿是不完全的,也即修正因数本身仍含有
不确定度。
通过修正因子或修正值已进行了修正的测量结果,即使具有较大的不确定度,但可能仍然十分接近被测量的
真值(即误差甚小),因此,不应把
测量不确定度与已修正测量结果的误差相混淆。
以测量仪器的偏差为例,它是从零件加工的“尺寸偏差”的概念引伸过来的。尺寸偏差是加工所得的某一实际尺寸,与其要求的参考尺寸或标称尺寸之差。相对于实际尺寸来说,由于加工过程中诸多因素的影响,它偏离了要求的或应有的参考尺寸,于是产生了尺寸偏差,即
对于量具也有类似情况。例如:用户需要一个
准确值为1kg的砝码,并将此应有的值标示在砝码上;工厂加工时由于诸多因素的影响,所得的实际值为1.002kg,此时的偏差为+0.002kg。显然,如果按照
标称值1kg来使用,砝码就有-0.002kg的
示值误差;而如果在标称值上加一个修正值+0.002kg后再用,则这块砝码就显得没有误差了。这里的示值误差和修正值,都是相对于标称值而言的。从另一个角度来看,这块砝码之所以具有-0.002kg的示值误差,是因为加工发生偏差,偏大了0.002kg,从而使加工出来的实际值(1.002kg)偏离了
标称值(1kg)。为了描述这个差异,引入“偏差”这个概念就是很自然的事,即
在此可见,定义中的偏差与修正值相等,或与误差等值而反向。应强调指出的是:偏差相对于实际值而言,修正值与误差则相对于
标称值而言,它们所指的对象不同。所以在分析时,首先要分清所研究的对象是什么。还要提及的是:上述尺寸偏差也称实际偏差或简称偏差,而常见的概念还有“
上偏差”(
最大极限尺寸与应有参考尺寸之差)及“
下偏差”(
最小极限尺寸与应有参考尺寸之差),它们统称为“
极限偏差”。由代表上、下偏差的两条直线所确定的区域,即限制尺寸变动量的区域,通称为尺寸公差带。