倒序相加法
数学求和方法
倒序相加法,是解决数列求和问题的一种经典方法,相传是大数学家高斯在幼年时首先使用。人们因此受到启发,创造了倒序相加法。在等差数列前n项和公式的推导过程中,就使用了这种方法。
概念
如果一个数列,与首末项等距的两项之和等于首末两项之和,可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法(可用于求等差数列的性质公式------)
例题
如求
举例2
数列:2 4 6……2n的前2n项和
解答:
2 4 6 …… 2n
2n 2(n-1) 2(n-2)…… 2
设前n项和为S,以上两式相加
2S=[2+(2n)]+[4+2(n-1)]+[6+2(n-2)]+……+[(2n)+2] 共n个2n+2
故:S=n(2n+2)/2=n(n+1)
参考资料
最新修订时间:2023-11-24 16:30
目录
概述
概念
例题
参考资料