倒格子
固体物理学专业术语
固体物理学专业术语。和布拉格矢量(晶格矢量)共轭的另一组矢量基所组成的空间,俗称动量-能量空间,适合于用来描述声子电子的晶格动量。
简介
中文名称:倒格子
英文名称:Reciprocal Lattice
倒格子,亦称倒易格子(点阵),它在固体物理学中,特别是在晶格动力学理论、晶体电子论以及晶体衍射方面有着较为广泛的应用。
定义
假定晶格点阵基矢a1、a2、a3(粗体字表示 a1 等是矢量,以下类同)定义一个空间点阵,我们称之为正点阵或正格子,若定义
b1 = 2 π ( a2 × a3) /ν
b2 = 2 π ( a3 × a1) /ν
b3 = 2 π ( a1 × a2) /ν
其中 v = a1 · ( a2 × a3 ) ,为正点阵原胞的体积。也就是说,若定义(以下三个公式中a1、a2、a3、b1、b2、b3都表示矢量):
则新的点阵的基矢 b1、b2、b3是不共面的,因而由 b1、b2、b3也可以构成一个新的点阵,我们称之为 倒格子 ,而 b1、b2、b3 称为 倒格子基矢。
性质
1. 倒格子的一个矢量是和晶格原胞中一组晶面相对应的,它的方向是该晶面的法线方向,而它的大小则为该晶面族面间距倒数的2π倍。
2. 由倒格子的定义,不难得到下面的关系
ai · bj = 2 π δij
3. 设三维倒格子与正点阵(格子)中的位置矢量分别为
G = α b1+ β b2 + γ b3R = η a1 + θ a2 + λ a3 (α,η,β,θ,γ,λ皆为整数)
不难证明G·R = 2π ( αη + βθ +γλ ) = 2π n,其中n为整数。
4. 设三维倒格子原胞体积为 ψ ,正格子原胞体积为 v ,根据倒格子基矢的定义,并利用矢量乘法运算知识,则可得到 ψ v = ( 2 π )^3.
5. 正格子晶面族(αβγ)与倒格子矢量 G = α b1+ β b2 + γ b3 正交
6.正格子与倒格子的体积互为倒数
倒格子引入的意义
这里简单的说一点,如上面的性质1,倒格子中的一个基矢对应于正格子中的一族晶面,也就是说,晶格中的一族晶面可以转化为倒格子中的一个点,这在处理晶格的问题上有很大的意义。例如,晶体的衍射是由于某种波和晶格互相作用,与一族晶面发生干涉的结果,并在照片上得出一点,所以,利用倒格子来描述晶格衍射的问题是极为直观和简便的。
另外,在固体物理中比较重要的 布里渊区 ,也是在倒格子下定义的。
参考资料
最新修订时间:2024-12-24 11:21
目录
概述
简介
定义
参考资料