在对
储能过程进行分析时,为了确定研究对象而划出的部分
物体或空间范围,称为储能系统。它包括
能量和
物质的输入和输出、能量的转换和储存设备。储能系统往往涉及多种能量、多种设备、多种物质、多个过程,是随时间变化的复杂能量系统,需要多项指标来描述它的性能。常用的评价指标有储能密度、储能功率、蓄能效率以及储能价格、对环境的影响等。
任务与作用
由于人们所需的能源都具有很强的时间性和空间性,为了合理利用能源并提高能量的利用率,需要使用一种装置,把一段时期内暂时不用的多余能量通过某种方式收集并储存起来,在使用高峰时再提取使用,或者运往能量紧缺的地方再使用,这种方法就是能量存储。
能量储存系统的基本任务是克服在能量供应和需求之间的时间性或者局部性的差异。产生这种差异有两种情况,一种是由于能量需求量的突然变化引起的,即存在高峰负荷问题,采用储能方法可以在负荷变化率增高时起到调节或者缓冲的作用。由于一个储能系统的投资费用相对要比建设一座高峰负荷厂低,尽管储能装置会有储存损失,但由于储存的能量是来自工厂的多余能量或新能源,所以它还是能够降低燃料费用的。另一种是由于一次能源和能源转换装置之类的原因引起的,则储能系统(装置)的任务则是使能源产量均衡,即不但要削减能源输出量的高峰,还要填补输出量的低谷(即填谷)。
例如,太阳能热利用系统中,需要设置储能器。太阳能热利用的工作原理如图1所示,热流离开集热器后入储能器,然后经过热能转换器供给热机。在没有太阳光期间,冷流体直接经过储能器,提取存储的热量并传给热机工作。
所以,能源储存系统可以储存多余的热能、动能、电能、位能、化学能等,改变能量的输出容量、输出地点、输出时间等。
储能系统要求
对于不同应用目的有各自的储能要求,但归纳起来,一个良好的储能系统共有的特性如下。
①单位容积所储存的能量(容积储热密度)高,即系统尽可能储存多的能量。如
高能电池,由于其能量密度比普通电池要大,使用寿命也较长,深受消费者欢迎。
②具有良好的负荷调节性能。能源储能系统在使用时,需要根据用能一方的要求调节其释放能量的大小,负荷调节性能的好坏决定着系统性能的优劣。
③能源储存效率要高。能量储存时离不开能量传递和转换技术,所以储能系统应能不需过大的驱动力而以最大的速率接收和释放能量。同时尽可能降低能量存储过程中的泄漏、蒸发、摩擦等损耗,保持较高的能源储存效率。
④系统成本低、长期运行可靠。如果能源储存装置在经济上不合理,就不可能得到推广应用。
储能技术方法
储能主要包括热能、动能、电能、电磁能、化学能等能量的存储,储能技术方法见表1.5。储能技术的研究、开发与应用主要是以储存热能、电能为主,广泛应用于太阳能利用、电力的“移峰填谷”、废热和余热的回收以及工业与民用建筑和空调的节能等领域。
(1)热能存储技术
热能存储就是把一个时期内暂时不需要的多余热量通过某种方法储存起来,等到需要时再提取使用。包括显热储能技术、潜热储能技术、化学反应热储能技术三种,三种热能存储的比较见表1.6。
显热储能技术是通过加热储能介质提高其温度,而将热能储存其中。常用的显热储能材料有水、土壤和岩石等。在温度变化相同的条件下,如果不考虑热损失,那么单位体积的储热量水最大,土壤其次,岩石最小。世界上已有不少国家都对这些储热材料进行了试验和应用。就目前来说,这是一种技术比较成熟、效率比较高、成本又比较低的储能方法。
潜热储能技术是利用储能介质液相与固相之间的相变时产生的熔解热将热能储存起来的。实际应用的潜热储能介质,有
十水硫酸钠(化学式是Na2S04·10H20)、
五水硫代硫酸钠(化学式是Na2S04·5H20)和
六水氯化钙(化学式是CaCl2·6H20)等。该技术的特点是在低温下储能,具有较高的储能量密度,可在一定的相变温度下取出热量,但是储能媒介物价格昂贵,容易腐蚀,有的介质还可能产生分解反应,储存装置也较显热型复杂,技术难度
较大。
化学能存储技术利用能量将化学物质分解后分别储存能量,分解后的物质再化合时,即可放出储存的热能。可以利用可逆分解反应、有机可逆反应和氢化物化学反应三种技术实现,其中氢化物化学反应技术是最有发展潜力的,国内外都正在进行深入的研究,如果能够取得突破性的成功,就将为解决能源短缺的问题提供良好的途径。
(2)电能存储技术
工业上已应用的电能存储技术主要有三种,分别为水力储能技术、
压缩空气储能技术、飞轮储能技术。水力储能技术是最古老的、技术最成熟的、设备容量最大的商业化技术,全世界已有约500座水力储能电站,其中容量超过1000MW的有35座。水力储能系统一般有两个大的储水库,一个处于较低位置,另外一个则位于较高的提升位置。在用电低峰期,将水从位置较低的水库送到位置高的储水库中去储存起来。当需要电能时,可以借助高位水库水流的势能推动水能机发电。
压缩空气储能是在用电低峰期将空气加压输送到地下盐矿、废弃的石矿、地下储水层等。当用电负荷较大时,压缩空气就可与燃料燃烧,产生高温、高压燃气,驱动
燃气轮机做功产生电能。应用的机组设备容量已达到几百兆瓦。如装机容量为290MW的德国芬道尔夫电站1980年就已投入使用。
飞轮储能发电技术是一种新型技术,它与电力网连接实现电能的转换。飞轮储能发电系统如图1.12所示,该系统主要由电机、飞轮、电力电子变换器等设备组成。飞轮储能的基本原理就是在电力富裕条件下,将电力系统中的电能转换成飞轮运动的动能。而当电力系统电能不足时,再将飞轮运动的动能转换成电能,供电力用户使用。与其他储能技术相比,飞轮储能技术具有效率高(80%~90%)、成本低、无污染、储能迅速、技术可靠等优点,受到日本、美国、德国研究工作者的关注。如日本冲绳电力公司开发了210MJ的飞轮储能系统;德国1996年研制了储能5MW·h/100MW·h的
超导磁悬浮储能飞轮储能电站,系统效率达96%。
开发进展
美国大规格锂离子(Li-ion)可充电电池和能源储存系统(ESS)的制造商、设计商和开发商国际电池(International Battery)公司于2010年11月1日宣布,推出lBexus-24V-4.1kW·h锂离子能源储存系统,可很好地适用于太阳能和其他可再生能源的储存。Ibexus产品家族第一款为新的八电池24V ESS模块,已供充电能量储存需求用于不同的项目,IB24V 008 ESS为4.1kW·h系统,含有八个160Ah锂离子磷酸盐电池呈串联排列。该电池系统符合接触器、电池变换和热管理控制标准。对于易用的通讯,系统包括RS232、RS485、CANbus、Modbus或Ethernet通讯和数据记录功能。电池管理系统(BMS)可使电池性能最大化、提高安全和监控水平/平衡各个电池。
陶氏化学公司于2010年11月2日宣布,将开展新的业务,制造先进电池材料,以用于能量储存工业。初步重点致力于汽车市场。陶氏化学公司将出售这些先进材料,这些先进材料将可用于可充电的锂离子电池制造,以生产可长时间工作、提高电力和长工作寿命的电池。能量储存工业中改进的电池性能是可大大提升该工业的产品性能和动态性能的关键需求,因此,可为电池化学材料的解决方案创造大的发展机遇一陶氏化学公司承诺为满足能量储存工业短期和中期的需求,将实施综合的和多方位的商业化材料发展战略。
美国Contour能量系统(Contour Energy Systems)公司于2010年11月2日宣布,与CalTeeh和CNRS公司合作,开发出新的氟基电池化学、纳米材料化学和制造工艺,应用于锂离子电池能量储存系统,这种专有的锂离子电池氟化生产工艺和氟化多层的
碳纳米材料已申请专利(US 7794880)。这些技术将产生长期持久的便携式电力解决方案,与传统的锂电池相比,具有较大的电力和能量密度。这一技术初步已在美国加利福尼亚技术研究院CNRS公司、
法国国家科学研究中心完成开发,Contour能量系统公司在世界上拥有技术许司权,涉及先进电池和电化学系统技术。氟化制造工艺是Contour能量系统公司的氟化碳电泄独有的特征工艺。这一专有的工艺将氟引人多层碳纳米材料中,与传统的氟化碳材料相比可提供完全不同的分子结构。这种新的结构与使用新的多层碳纳米材料相结合,比现有类翌的电池具有很大的优点,包括大大增加了能量和电力密度、可在苛刻条件下可靠地操作、翅长自身寿命和防止过热,所有这些可优化应用于一些特定的应用中。
国际电池公司(International Battery)于2010年11月15日宣布,接受美国宾夕法尼亚能源开发局(PEDA)80万美元的资助,开发、设计、制造和试验800kW·h的大型能量储存系统(BESS),扩大到1MW。这使国际电池公司拥有迄今为止最大的电池系统,业已完成的能量储存系统将验证采用大格式锂电池的优点,它可应用于可再生能源集成和智能电网支持。该储存系统采用国际电池公司的大格式锂电池和电池管理系统(BMS)(变换器)以及控制/通讯系统构成,800kW·h系统的初步设计工作已在进行中,将于201 1年第二季度进行测试。该公司设置BESS用于与可再生能源和智能电网进行集成二该电池组装采用水基工艺,代替常用的使用大量有机溶剂化学品。
韩国SK能源公司与中国台湾台塑集团于2010年12月29日签约,建立开发同定式锂离子能量储存系统战略合作伙伴,台塑集团是台湾最大的公司和亚洲最大的私营石化公司。按照签署的谅解备忘录,由台塑集团开发和生产的阴极将应用于由SK能源公司生产的能量储存系统(ESS)。两家公司将合作完成这项工作。能量储存系统(ESS)是一种大型电池,与电动汽车现用的电池相比,可储存高达1000多倍的能量SK能源公司表示,与台塑集团合作将有助于开发安全的能量储存系统(ESS),也将有助于使ESS进入中国市场,中国现是世界新能源和可再生能源最大的市场.