光周期现象
美国的Garner和Allard发现的现象
大量实验证明,许多植物的开花与昼夜的相对长度即光周期有关。植物在生长发育进程中,必须经过一定时间的适宜光周期后才能开花,否则一直处于营养生长状态。这种昼夜长短影响植物开花的效应叫做光周期现象。
现象发现
光周期现象是美国的Garner和Allard发现的。上述现象说明植物在特定季节开花,他们认为一定有某个环境因子在控制开花,大家知道,主要的环境因子有温、光、水、气、矿质营养,那么随季节变化的主要是温度和光照长度,因此,他们检验了日照长度对烟草开花的影响,结果发现,只有当日照短于14小时时,烟草才开花,否则就不开花。后来又发现许多植物开花需要一定的日照长度,如冬小麦、菠菜、萝卜、豌豆、天仙子等,这就是光周期现象的发现。1920年,Garner和Allard在美国马里兰州美国农业部Beltsville农业试验站工作,他们发现两个难以解释的现象,一个是烟草品种马里兰猛犸象,在夏季株高可达3~5米,但是不开花,如果在冬季的温室里,株高不到1 米就可以开花;另一个现象是,某个大豆品种,在春季的不同时间进行播种,但在夏季的同一时间开花,尽管不同播种期大豆的营养体大小不同。
反应类型
短日植物
在 24 h 昼夜周期中,日照长度必须短于一定时数(即短于临界日长),才能开花的植物。这类植物称为短日植物。如果适当延长黑暗或缩短光照可促进或提早开花,相反,延长日照则延迟开花或不能成花。这类植物有:水稻、玉米、大豆、高粱、苍耳、草莓、烟草、菊花、秋海棠、牵牛花等。
长日植物
在24小时昼夜周期中,日照长度长于一定时数才能开花的植物。如大麦、小麦、黑麦、萝卜、菠菜、甘蓝、大白菜、天仙子、甜菜等。
①绝对长日或绝对短日植物
在24小时中成花有一个明确的临界日长,即成花所需要的极限日照长度。日照时数超过这个临界日长,就不能开花的植物称为绝对短日植物,而日照时数超过这个临界日长才能开花的植物称为绝对长日植物。
和临界日长对应的还有临界夜长(critical dark period)。临界夜长是指在昼夜周期中,短日植物能够开花的最小暗期长度,或长日植物能够开花的最大暗期长度。
表:一些绝对短日植物和绝对长日植物的临界日长
例如上表中北京大豆开花的临界日长为15小时,也就是说超过15小时,成花反应就会受到影响。那么它所对应的临界夜长就是9小时。也就是说,夜长不能短于9小时,否则会影响成花。长日植物与之相反。
从某种意义上来说,临界夜长比临界日长对开花更为重要。长夜诱导短日植物开花,却抑制长日植物开花。因此,也把短日植物叫做长夜植物(long-night plant)。把长日植物叫做短夜植物(short-night plant)。
②相对长日或相对短日植物
不少短日植物和长日植物的开花并不是绝对地有一个临界日长。它们在不适宜的日照长度下,经过相当长时间也能勉强形成花。例如加拿大苍耳就是一个相对短日照植物
日中性植物
这类植物的成花对日照长短的反应不敏感,只要其他条件满足,在任何长度的日照下均能开花。如月季、黄瓜、茄子、番茄、辣椒、菜豆、君子兰、蒲公英等。
中日性
只能在一定的日照长度范围才能够开花。
短长日
在这类植物中,花诱导和花形成两个过程需要不同的日照长度。例如大叶落地生根和叶香树的花诱导需要长日照。其后,若继续在长日照下,则不能形成花器官,只有在短日照下才能成花。这种植物就叫做长—短日植物。风铃草和瓦松恰好相反,花的诱导是在短日条件下完成,而花器官的形成要求长日照,这种植物就是短——长日植物。
植物对光周期的反应具有一定特点
地理纬度
我国地处北半球,春季的短日时期气温较低,植物一般处于苗期,与开花暂时无关。秋季则气温较高,适于植物生长,所以这时的日照就显著的影响植物的开花。夏季的自然长日照时期,气温较高,是植物生长发育的适宜时期。一年之中,影响植物开花结实的基本上是这两个季节。在低纬度地区,终年气温较高,但无长日条件,所以只有短日植物,一般都是在早春出芽,在夏季和秋季任何时候均开花。有些植物可以多季,如水稻;在中纬度地区,既有长日条件,又有短日条件,且秋季气温较高,所以长短日植物均有分布。长日植物在春末夏初开花,而短日植物在秋季开花;在高纬度地区(我国东北),虽然有长日和短日条件,但气温的季节性变化比较明显。秋季短日照时,气温已低,植物又不能生长。所以不能生存一些要求日照较长的植物。
植物光周期反应的不同类型是长期适应环境的结果。由于地球上同一纬度在不同的季节、不同纬度在同一季节之间光周期不同,所以就形成了植物光周期反应类型的规律性分布。
机理
感受部位
实验证实:感受光周期反应的部位是植物的叶片:例如用短日照的植物-菊花进行实验,首先将植株顶端的叶子全部去掉。
开花传导
接受光周期诱导的部位是叶片,进行光周期反应的部位是茎尖的生长点,叶和起反应的部位之间隔着叶柄和一段茎。那么,必然有一个开花刺激物传导的问题。以苍耳的嫁接实验来说明。把五株苍耳植物互相嫁接在一起,且只让其中一株上的一张叶片处于苍耳开花适宜的光周期(短日照)下,其他植株都处于不适宜的光周期(长日照)下,它们都可以开花。
这就证明,植株之间确有开花刺激物质通过嫁接的愈合而传递。
另外,经过短日照处理的短日植物,例如高凉菜,把其嫁接到长日植物八宝植株上,可引起八宝在短日条件下开花。反之,若将长日处理的长日植物,接到短日植物上,可引起短日植物在长日条件下开花。这说明两种光周期反应的植株所产生的开花刺激物几乎具有相同的性质。用蒸汽或麻醉剂处理叶柄或茎,可以阻止开花刺激物的运输,说明运输途径是韧皮部。苏联的柴拉轩将这种刺激物叫做成花素(forigen),但这种物还没有被分离出来。
周期诱导
光周期诱导:植物只要得到足够日数的适合光周期,以后即便置于不适合的光周期条件下仍可开花,这种现象称作光周期诱导。
植物完成光周期诱导的光周期处理天数(即几个光周期)因植物而异:
苍耳:一个光周期。即15小时照光及9小时的黑暗(15L-9D)。日本短牵牛:一天。大部分短日植物的诱导期需要一天以上,如大豆3天,大麻4天,红叶紫苏7-9天,菊12天等。长日植物需要一天的有:白芥、菠菜、油菜、毒素等。一天以上的有:天仙子:2-3天,拟南菜4天,一年生甜菜13-15天等。
不同植物光周期诱导需要的天数与植物年龄、温度、光照强度光照长度有关。植物年龄小(达到光周期诱导的能力)、温度高、光照强,诱导期缩短。
中断现象
光周期诱导的光照强度: 在自然条件下,光周期诱导所要求的光照强度弱的,远远低于光和作用所需的光强度。一般认为在50~100勒克斯之间,有些植物甚至更低,例如水稻在夜间补充光照时,光强只需8~10勒克斯,就能明显地刺激光周期反应。说明植物光周期反应对光是极敏感的。
②暗期光中断现象和生理效应暗期光中断现象表明了光周期反应与光强、光质以及参与光反应物质之间的关系。
暗期对植物的开花更为重要,对于短日植物,它的开花决定于暗期的长度,只要暗期超过临界夜长(临界暗期),不管光期多长,它都开花。所以,又称短日植物为“长夜植物”更为确切。长日植物则相反,它不需要连续黑暗。假如在足以引起短日植物开花的暗期中间,被一个一定强度的闪光所间断,短日植物就不能开花,长日植物就能开花,这种现象叫做暗期光中断现象。
用不同波长的光来间断暗期的试验表明:无论是抑制短日植物开花,还是诱导长日植物开花,都是红光最有效。如果在红光照过后立即再用远红光照,那么暗期闪光间断的效应就会消失。说明暗期闪光间断效应有光敏素参与。
光敏作用
暗期闪光中断效应作用的最大作用光谱正好是光敏素的最大吸收光谱,最小作用光谱也正好是光敏素的最小吸收光谱。
①光敏素的物理化学性质
光敏素可以从高等植物几乎所有部分中提取出来,也就是说存在于高等植物的所有组织(根、茎、叶、花、果、实、种子、胚芽鞘)中。在细胞中,光敏素可能集中在细胞的膜的表面上。绿色组织中光敏素含量较低,在黄化组织中较高,浓度级为10-7—10-5M。
高纯度的光敏素已从黄化的单子叶植物幼苗(玉米等)中制的。经鉴定是一种蓝色蛋白质,它的生色团类似叶绿素和血红素,有四个吡咯环,但它们不是环状连接,而是开放成直链,以共价键与蛋白质部分相连,即由蛋白质和生色团两部分所组成。天然的光敏素分子量大约为120kDa。
②光敏素与开花诱导
光敏素有两种存在形式,Pr和Pfr。在黄化组织中,光敏素大部分以红光吸收型(Pr)存在,其吸收高峰在660nm。当用红光照射时,Pr的吸收光谱发生变化,吸收高峰在725 nm。这说明通过红光照射Pr已转变为另一种形式(Pfr)。
光敏素在开花中如何产生生理效应还不清楚。光敏素本身并不是开花刺激物,但它可以触发开花刺激物的形成(合成或激活)。一般认为,不论是短日植物(SDP)还是长日植物(LDP),其开花都与Pfr与Pr的比例有关。对于SDP,在光期结束时,Pfr/Pr比值高(因为在白天,红光比例大,有利于Pfr的形成),开花刺激物的合成受到阻止。转入夜间后,Pfr向Pr逆转,Pfr/Pr比值变小。当此值到一定水平时,就会触发引导开花刺激物形成的代谢过程,SDP的成花反应就可以发生。如暗期为红光所间断,Pr转换成Pfr,Pfr/Pr比值升高,开花刺激物的形成即遭受阻止。
对于LDP,形成开花刺激物,要求较高的Pfr/Pr比值,这一比值可在长光期结束时获得。如果在短日照下,暗期过长,则Pfr转变为Pr,或Pfr受到破坏,Pfr/Pr值达不到较高水平,开花刺激物就不能形成。暗期的红光间断,可使Pfr/Pr值重新提高,使开花刺激物得以合成,长日植物就可以开花。
最新修订时间:2022-08-25 18:15
目录
概述
现象发现
参考资料