六度分隔(Six Degrees of Separation)理论。简单地说:“你和任何一个陌生人之间所间隔的人不会超六个,也就是说,最多通过六个人你就能够认识任何一个陌生人。”
理论内容
六度分隔(Six Degrees of Separation)理论。1967年,
哈佛大学的心理学教授Stanley Milgram(1933-1984年)想要描绘一个连结人与社区的人际连系网。做过一次连锁信实验,结果发现了“六度分隔”现象。简单地说:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过六个人你就能够认识任何一个陌生人。”
“六度分隔”说明了社会中普遍存在的“弱纽带”,但是却发挥着非常强大的作用。有很多人在找工作时会体会到这种弱纽带的效果。 通过弱纽带人与人之间的距离变得非常“相近”。
数学解释:若每个人平均认识260人,其六度就是260的6次方=308,915,776,000,000(约300万亿)。消除一些节点重复,那也几乎覆盖了整个地球人口若干多倍。
米尔格拉姆连锁信实验
经过
米尔格拉姆的研究本来在无特定的市民大众进行,而不是在专业的、需要高度合作的数学界及演艺界进行(参见下
堪萨斯州威奇塔市自愿参加者,请他们转交到麻萨诸塞州
剑桥市某指定地点的股票经纪人。
参加者只能把信交给他认为有可能把信送到目的地的熟人,可以亲自送或者通过他的朋友。虽然有50个人参与了实验,但组中只有3封信送到了目的地。米尔格拉姆在他1967年的那篇著名论文中提到在最初的实验中,其中的一封信在不到4日的时间内,就被传达到了目的地,但是他却忽略了一个重要事实,那就是实际上只有不到5%的信件最终被送达了。在随后两次连锁信实验,因完成连锁的比例太低,实验结果未被发表。但是幸运的是,研究者发现很多微妙的因素会对连锁信实验的结果产生极大的影响。研究者尝试在不同种族和不同收入人群中来重复实验,他们发现巨大的差异。事实上,在米尔格拉姆合著的一篇论文中揭示如果信件的最终接受者为黑人,实验的送达率为13%,而如果是白人,则送达率上升为33%,尽管实验者开始的时候并不知道接受者的种族。
发现
虽然饱受议论,但米尔格拉姆带来了不少新奇的发现。经过多次改良实验,米尔格拉姆发现信件或包裹在人们心目中的价值是影响人们决定继续传递它的重要因素。他成功将送达率提升至35%,后来更上升为97%。抛开对“地球是很小的”这样论断的怀疑不说,人们对“某个特定世界是很小”的论断是没有丝毫怀疑的(例如:从某个学院到密歇根大学到蒙特利尔犹太人社区。平均来看,为实现一次送达,需要6个中间人从而得出了六度分隔理论的说法(Six Degrees of Separation),他可能源于六个自由度的说法 (Six Degrees of Freedom)。不仅如此,米尔格拉姆还发现了漏斗效应,他发现大部分的传递都是由那些极少数的明星人物完成的。48%的链接经过了平均3个明星中间人之手。该理论提出后,领受争议,几十年来,许多著名的社会心理学家和数学家以及相关学科的研究人员对“六度分隔理论”进行了反复的计算和验证,发现世界虽然很大,但是如果将每个人自己的人际关系网络考虑进去,人与人的距离其实很小。2001年,哥伦比亚大学社会学系的登肯·瓦兹(Watts,D.J.)主持了一项最新的对该理论的验证工程。166个不同国家的60000多名志愿者参加了该研究。瓦兹随机选定18名目标(比如1名美国教授、1名澳大利亚警察和1名挪威兽医),要求志愿者选择其中的一个作为自己的目标人,并发送电子邮件给自己认为最有可能发送邮件给目标人的亲友。瓦兹发表在《科学》杂志上的论文表明邮件要达到目标人那里,平均也只要经历5一7个人左右。
尽管如此,这个实验仍然存在着一个具有挑战性的假设:它假设传递链条中所有的实验者都完全有能力发掘链条终端的两个人传递的有效性。
应用
原理
利用
维基百科每篇条目内的链接,计算从一篇条目到另一个条目所需的次数。
示例
新浪到
中央电视台的最短路径为3,
伊丽莎白一世到
仓颉和
几何的最短路径也为3。
微软MSN中应用
微软的研究人员 Jure Leskovec 和 Eric Horvitz过滤2006年某个单一月份的
MSN简讯,利用2.4亿使用者的300亿通讯息进行比对,结果发现任何使用者只要透过平均6.6人就可以和全数据库的1,800百亿组配对产生关连。48%的使用者在6次以内可以产生关连,而高达78%的使用者在7次以内可以产生关连。
研究结果
Facebook的团队为了宣扬
Facebook周年纪念的朋友日,研究了当时已注册的 15.9 亿使用者资料,要在如此巨量资料上计算透过几个人,可以找到两个人之间关联的
数字,是一个巨大的挑战。在2016年2月4号时于
网站FACEBOOK research 公布标题为 Three and a half degrees of separation 的研究结果,发现这个神奇数字的“网络直径”是 3.57,翻成白话文意味着每个人与其他人间隔为 3.57 人。如果仅考虑
美国使用者的话,这个数字会降到平均 3.46 个人。
根据追踪研究发现,这个“分离度”从 2011 年开始有持续下降的趋势。2011年,来自美国康乃尔大学、意大利米兰大学的学者与脸书研究团队合作,计算了当时的 7.21 亿使用者资料,发现这个数字是 3.74。现在 Facebook 的人口成长将近 2 倍,这个数字却降低了一些。Facebook 研究团队在这个整合、无法回推追踪的大数据上,使用不同学者发明的一些统计技术与算法,精确预测这个距离。
数学解释
依据
邓巴数,若每个人认识150人,其六度就是150=11,390,625,000,000(约11.4万亿)。消除一些节点重复,那也几乎覆盖了整个地球人口数倍以上。
公式可以进一步抽象成:,其中n表示复杂度,N表示人的总数,W表示每个人的联系宽度。
参见