在夜间或低亮度条件下,将不可见辐射加以转变或将微弱的夜天光增强,成为人眼可以感受的
可见光,应用于军事上进行隐蔽观察的光电技术。它主要用于夜间的侦察、照相、观察瞄准、车辆驾驶、装备修理、工程抢险和战地救护等。在民用上可用于天文观察、宇宙探测、航天航海、深水考查和核物理实验等。
技术说明
夜视技术通常分为红外夜视技术和
微光夜视技术两大类。前者包括红外线夜视仪、红外像转换技术、
红外热成像技术、红外照相技术、红外固态成像技术等。后者包括
微光夜视仪、微光像增强技术、微光电视技术、微光照相技术、微光固态成像技术等。
红外像转换技术
将人眼不可见的0.76~1.15微米的近红外辐射图像,通过
红外变像管转变为人眼可见的图像。工作时以红外变像管作为探测器和显示器,外加一个红外探照灯作为光源。从目标反射回来的红外辐射,聚焦成像在变像管一端的银氧铯光电阴极上,激发出光电子。这些光
电子被管内的电子透镜(电压为20千伏左右)加速并聚焦到荧光屏上,轰击荧光屏发光,显现出可见光图像(图1)。 军用夜视技术
利用这种技术的夜视器材,称为主动红外夜视仪。它具有场景反差大、闪烁小、成像比较清晰等优点,特别适用于陆地观察。而且
红外变像管的工艺比较成熟,造价低廉,受外界自然环境照明情况影响也较小。但红外光源及其供电装置比较笨重,耗电多,观察范围、视距也受到探照灯功率和尺寸的限制。且隐蔽性较差。如苏联的AПН-3型火炮瞄准具:视场2ω =6°,倍率7.5x,作用距离800~1000米,重量14千克。
红外热成像技术
基于记录目标与背景温度的差别来显示图像。工作时以一种内光电效应的红外探测器作为接收元件,光学系统将目标各处根据自身温度辐射的中长波红外辐射,通过光机扫描或其他扫描技术转变成电信号,经处理后,由显示器转变成可见图像(图2)。利用这种技术的夜视器材,称为热像仪。 军用夜视技术
热像仪能发现和识别经过一般伪装的目标,隐蔽地实施昼夜观察,具有较高的抗干扰能力。但作用距离受气象条件影响较大,造价太高,在推广使用和广泛装备上受到限制。热像仪的性能现已达到等效噪声温差为0.1K,空间分辨率0.1~0.4毫弧度。红外前视系统所得到的图像在帧频、分辨率和信噪比方面都已达到广播电视水平,作用距离一般可在1公里以内识别人,2公里以内识别车辆,15~20公里以内跟踪飞机。
应用
热释电摄像管的热成像系统,频谱响应宽,长波峰值可延伸到14微米,无需制冷,并具有与普通电视兼容、操作简便等优点。在无调制情况下,能区别固定景物和运动目标,发现热辐射变化的物体。在加调制后,能观察固定目标。其缺点是空间分辨率尚差。
微光像增强技术
直接利用夜间微弱的夜天光(月光、星光和大气辉光)照明,由像增强器将来自目标的反射辐射,转变为增强的光学图像。利用这种技术的夜视器材,称为
微光夜视仪。由于无需附加光源,隐蔽性较好。但受自然环境照明情况影响较大,且易受伪装的欺骗和干扰。这类器材已经发展了三种类型:①用级联或串联像增强器的微光夜视仪。这种像增强器采用了对夜天光更为灵敏的多碱光电阴极。它的结构和工作原理与红外变像管相似。为了提高亮度增益,多采用
光学纤维面极(或薄云母片)将三个单级像增强器耦合起来,成为三级级联(或串联)静电聚焦像增强器。如法国的OB25型微光瞄准具,视场2ω=11°,倍率4,分辨率1.5毫弧度,在星光下对人的作用距离为400米、对车辆为500米、对坦克为700米,重量2.9千克。②用
微通道板像增强器的微光夜视仪(图3)。
微通道板实质上是一个薄的二次
电子倍增器。这种像增强器又可分为薄片管和倒像管两种。前者将微通道板放在光电阴极与荧光屏之间,形成双近贴像增强器;后者则相当于在单极像增强器的荧光屏前面,加了一块微通道板。由于微通道板的增益较高,只要用一个单管就够了,因而缩小了体积、减轻了重量。如法国的OB44型微光望远镜,视场2ω =11°,倍率3,分辨率在10勒克斯时大于或等于0.6毫弧度,在星光下对人的识别距离为450米、对车辆为650米、对坦克为900米,重量仅1.9千克。③使用 Ⅲ-Ⅴ族化合物(如砷化镓)光电阴极像增强器的微光夜视仪。由于它的量子效率高,对夜天光光谱响应较好,因而能提高作用距离,分辨率也较高。但由于只能做成平面阴极,尺寸也不易做大,因而在应用上受到一定限制。 军用夜视技术
微光电视技术
在微弱的光照条件下(10勒克斯以下)利用电视手段进行观察。 其基本原理与工业电视相同,但灵敏度要求更高。它可在显像之前对信息加以适当处理,使图像质量得到改善。并可在一帧时间内积累信息以提高信噪比,还可供多人、多地点同时观察。缺点是耗电多,体积大,操作维护比较复杂,造价较高。微光电视主要由微光摄像机、监视器和控制器等部分组成。微光摄像机常采用电子轰击硅靶摄像管。为了能在星光条件(10勒克斯以下)下进行工作,一般还需要再耦合上一级像增强器。此外,还有带微通道板像增强器的视像管摄像系统,带三级像增强器的视像管摄像系统等。随着
电荷耦合器件和电子轰击半导体电荷耦合器件的出现和不断发展,为微光摄像机性能的不断提高开辟了新的途径。
发展简史
1929年L.R.科勒发明了对近红外辐射灵敏的银氧铯光电阴极。20世纪30年代初,美国工程师P.T.法恩斯沃思和G.霍尔斯特提出了光电图像转换原理,为近代夜视技术提供了理论基础。以后,荷兰、德、美等国研制成红外变像管。
第二次世界大战后期,主动红外夜视仪开始用于实战。1936年,锑铯光电阴极出现后,开始了直接利用夜天光解决照明的
微光夜视技术研究。但直到1955年A.H.萨默发明高灵敏度的多碱光电阴极之后,微光夜视技术才得到迅速的发展。1962年美国研制出用光学纤维面板耦合的三级级联像增强器,并制成实用的微光夜视仪,即所谓“星光镜”,1965~1967年曾用于越南战场。1962年前后,微
通道电子倍增器研制成功。1970年研制成微通道板像增强器和相应的夜视仪,如美国的 AN/PVS-2A等。1965年J.范拉尔和J.J.舍尔制成第一个砷化镓负电子亲和势光电阴极。在此基础上,美国于1979年研制出用这种光电阴极带微通道板的像增强器和相应的夜视仪。1960年出现了微光电视,它实际上是微光技术与电视技术的综合利用,已广泛应用于地面、空中和海上的观察、监视和武器
火控系统。
热成像技术的发展可追溯到1930年前后,当时出现了
温度记录仪。40年代,出现了两种发展途径:一种是发展分立式的红外探测器,采用光机扫描的方法,将目标图像变换成视频信号;另一种是发展热释电红外摄像器件。前者发展比较迅速,性能也较好。1956年,美国芝加哥大学研制出一台XA-1型长波红外前视系统,实现了实时成像。60年代,美国研制了对并行和串行快速扫描实时成像红外前视系统,随后在空军和海军中大量应用。
展望
随着夜视技术的发展,有些国家正在研制将各种夜视技术的长处综合在一起,并同其他侦察手段(如雷达、
激光测距仪、毫米波成像器材等)结合起来,能同时在不同波段下工作的、主被动合一的组合夜视仪器。在固态成像技术方面,以新颖的电荷转移器件为图像传感和信号处理系统,用固体发光器件显示,实现固体自扫描的凝视型焦平面技术,也正在研究发展中。