化学进化就是指在原始地球条件下,由无机物以及简单有机物逐渐演变出原始细胞的过程,之后的进化就是物种的进化。
概念释义
苏联生物化学家奥巴林(Alexander Ivanovich Oparin,1894年~1980年)于1936年出版了《
地球上生命的起源》一书,提出了关于生命起源的化学进化理论。所谓化学进化就是指在原始地球条件下,由无机物以及简单有机物逐渐演变为
原始生命体的过程。根据物质由简到繁的可能发展模式,可以将这个化学进化过程大致区分为下列四个阶段。
进化过程
小分子生命构件
由无机小分子物质(如
氢、氨等)生成有机小分子物质(如氨基酸、
含氮碱基、
核糖或
脱氧核糖等)。这个方面已为越来越多的模拟原始地球条件的实验所证明。
1952年,美国化学家米勒(Stanley Lloyd Miller,1930年-2007年)在一个大烧瓶中放入早期地球大气中可能有的化学元素:水、氨、甲烷和氢,然后释放电火花,几天之后,在烧瓶底部聚集起一种橙色黏稠混合物,在甲烷中的碳有10-15%跑到有机化合物那里去了,包括构成蛋白质的9种氨基酸,这样通过向无机混合物的前生命汤放电,创造出了一些生命物质,虽然不是生命本身,但是,是一些能使生命成为可能的化合物。
生物大分子
从有机小分子物质形成生物
大分子物质。在原始还原性大气中生成的生物小分子(如氨基酸等)被雨水冲淋,溶解于原始海洋中,这些生物小分子要进一步变为生物大分子(如氨基酸变为蛋白质),就必须脱水缩合;而在原始海洋中进行脱水缩合,就像要使泡在水中的葡萄变干那样困难。科学家提出种种假说试图解决这个难题,比较可信而又可用实验证明的主要有两种:
①以色列科学家卡特恰尔斯基(A. Katchalsky)认为,原始海洋中的氨基酸是在某些特殊的粘土(原始地球和如今地球都有这样的粘土)上缩合成多肽的。他们在实验室内先将氨基酸与腺苷酸起反应,生成“活化的”氨基酸即“氨基酰腺苷酸”,后者在某些片层状粘土如蒙托土(montmorillonite)上,就能缩合成长短不一的多肽链。
②日本科学家赤崛四郎等提出一个能绕过“脱水缩合”这道难关的“聚甘氨酸理论”来说明多肽链的形成。他们认为,在原始大气中产生的甲醛与氨和氰发生反应,能生成一种名叫“氨基乙酰氰”的有机物,这种物质能够聚合,然后水解,生成聚甘氨酸(即多个甘氨酸聚合在一起所形成的多肽链),最后经过侧基(R)的变化而得到由各种
氨基酸残基组成的蛋白质。
多分子体系
从有机高分子物质组成
多分子体系。可以想象,蛋白质和核酸等有机高分子物质,在原始海洋中越积越多,在一定条件下(如高温和适当的pH等),它们相互作用,能形成多分子体系,有界膜与周围环境隔开,呈大、小不等的球状,在原始海洋中漂浮。这种设想亦已得到了初步的实验证明。
原始生命
从多分子体系演变为原始生命。这是生命起源最关键的一步,还未能在实验室里验证这一过程。从理论上讲,这一步的实质就是以蛋白质和核酸为主要成分的多分子体系,如何“由死变活”的问题,即新陈代谢和自我增殖能力是如何发生的?从生物学的角度看,这里有两个重要问题要解决:一是生物膜的产生,二是遗传机构的起源。
起源
1871年,英国博物学家达尔文在写给英国植物学家胡克(Joseph Dalton Hooker)的一封信中谈到了生命起源的问题,他写道,“人们常说初次产生生物的一切条件现在都具备,过去也会是如此。然而如果(好家伙!这是多么伟大的如果!)我们能够想出某一个温和的小池塘,并有氨、磷酸盐、光、热、电等所有的东西,并想像形成了某种蛋白质似的化合物,准备经历更复杂的变化;这样的物质将会立刻被吞食或吸收,这种情形在生物形成之前是不会发生的”(迈尔1990)。
达尔文关于生命可能起源自温暖小水池的观点一直受到一些学者的追捧。虽然20世纪的实验科学已经证实,在合适的光、热或电的条件下,由无机物(氨等)确实可以形成有机分子(氨基酸、肽类),但这实际上离揭示真正的生命起源还相差甚远。
美国化学家夏皮罗(Robert H. Shapiro,1935年-2004年)在1986年的著述中注意到达尔文上面这段似乎不经意的说法,“竟然与今天的知识相当符合,如果不是因为他有远见,就是说明多年来生命来源的研究没有什么进步”(詹腓力1999)。
细胞的诞生
但是,到底细胞是如何起源的呢?这是生命起源面临的最大难题。第一个细胞的起源也就宣告了地球上生命的起源,因此,从这种意义上来说,细胞的起源就等同于生命的起源。
最近,有学者提出了细胞的光养起源假设 (谢平2014)。在一定意义上来说,生命的起源始于有机物质的个性化体系的建立,或者说,没有个性便不会有真正生命的诞生。试问,如果有机分子只是飘忽无定地在“汤”中荡漾,怎会出现生命?哪种生命不以个体形式而存在呢?因此,能导致独立生命系统形成的简单的质膜结构的出现(不论通过何种机制或过程)必定是细胞进化的最关键的一步。不仅需要前细胞体整体的独立性,一些重要生命过程(特别是光合作用)也需要细胞内的独立性,即需要内膜系统,看看蓝细菌的专门的光合机构—类囊体就是如此。
在具备简单膜结构的前细胞体中,光合作用指向的选择过程促进主要生命物质的功能分化—脂质构建细胞膜、蛋白质主要扮演催化者、
DNA储存遗传信息、
RNA构成DNA与蛋白质之间的桥梁、糖类暂时性储存光合作用转化而来的化学能……。这不完全只是随机过程(虽然在很大程度上是),它更是具有目的性指向(最有效的太阳光能利用)的化学性与生命性的巧妙融合,它为生化反应的秩序化与生命过程的程序化铺垫了基石。
在这里,借用艾根所描绘的反应循环→催化循环→超循环的发展模式。生命通过具有限时性的所谓“永恒”的反应循环,基于一系列复杂而精致的正负反馈关系,连接成一种时限性的生命平衡系统,以便能最有效地将太阳光能转化成化学能。看看蓝细菌的光化学反应中心发生的若干循环反应(水的裂解、电子的循环传递等)、碳的固定(卡尔文循环)和呼吸(
三羧酸循环)……以及这些循环之间的连接与正负反馈调控等,这就是生化反应的秩序化过程。
生命的另一个本质特征就是将遗传物质指挥生命构建过程程序化,即将生命构建过程信息化地储存于DNA之中,这是个性化的生命获得自我繁殖特性必须迈出的重要一步。最后是细胞分裂机制的逐渐形成,这得益于细胞膜的半通透性(小分子养分的进入与大分子
碳水化合物的堆积),以及二者之间的矛盾及其必然的结果—细胞破裂过程的无数次重复。精确而周期化的细胞分裂才能使稳定的遗传成为了可能,这时像我们在现存生物中能所见到的细胞才成功地诞生了,细胞运行机制才得以程序化了。