压缩感知就是,对稀疏或可压缩信号可通过远低于Shannon-Nyquist采样定理标准的方式进行采样数据,其仍能够实现稀疏或可压缩信号的精确重构,这使得其在
信号处理领域中有着突出的优点和潜在的应用前景。
基本信息
压缩感知(Compressive Sensing, Compressed Sensing, or Compressed Sampling,简称CS),是近几年流行起来的一个介于数学和信息科学的新方向,由Donoho、Candes、Terres Tao等人提出,挑战传统的采样编码技术,即Nyquist采样定理。
理论
压缩感知理论为信号采集技术带来了革命性的突破,它采用非自适应线性投影来保持信号的原始结构,以远低于奈奎斯特频率对信号进行采样,通过数值最优化算法准确重构出原始信号。
概念特征
压缩感知从字面上看起来,好像是数据压缩的意思,而实则出于完全不同的考虑。经典的数据压缩技术,无论是音频压缩(例如 mp3),图像压缩(例如 jpeg),视频压缩(mpeg),还是一般的编码压缩(zip),都是从数据本身的特性出发,寻找并剔除数据中隐含的冗余度,从而达到压缩的目的。这样的压缩有两个特点:第一、它是发生在数据已经被完整采集到之后;第二、它本身需要复杂的算法来完成。相较而言,解码过程反而一般来说在计算上比较简单,以音频压缩为例,压制一个 mp3 文件的计算量远大于播放(即解压缩)一个 mp3 文件的计算量。
稍加思量就会发现,这种压缩和解压缩的不对称性正好同人们的需求是相反的。在大多数情况下,采集并处理数据的设备,往往是廉价、省电、计算能力较低的便携设备,例如傻瓜相机、或者录音笔、或者遥控监视器等等。而负责处理(即解压缩)信息的过程却反而往往在大型计算机上进行,它有更高的计算能力,也常常没有便携和省电的要求。也就是说,人们是在用廉价节能的设备来处理复杂的计算任务,而用大型高效的设备处理相对简单的计算任务。这一矛盾在某些情况下甚至会更为尖锐,例如在野外作业或者军事作业的场合,采集数据的设备往往曝露在自然环境之中,随时可能失去能源供给或者甚至部分丧失性能,在这种情况下,传统的数据采集-压缩-传输-解压缩的模式就基本上失效了。
压缩感知的概念就是为了解决这样的矛盾而产生的。既然采集数据之后要压缩掉其中的冗余度,而这个压缩过程又相对来说比较困难,那么我们为什么不直接「采集」压缩后的数据?这样采集的任务要轻得多,而且还省去了压缩的麻烦。这就是所谓的「压缩感知」,也就是说,感知和压缩在同一个步骤完成。
应用影响
在大量的实际问题中,人们倾向于尽量少地采集数据,或者由于客观条件所限不得不采集不完整的数据。如果这些数据和人们所希望重建的信息之间有某种全局性的变换关系,并且人们预先知道哪些信息满足某种稀疏性条件,就总可以试着用类似的方式从比较少的数据中还原出比较多的信号来。到今天为止,这样的研究已经拓展得非常广泛了。
但是同样需要说明的是,这样的做法在不同的应用领域里并不总能满足上面所描述的两个条件。有的时候,第一个条件(也就是说测量到的数据包含信号的全局信息)无法得到满足,例如最传统的摄影问题,每个感光元件所感知到的都只是一小块图像而不是什么全局信息,这是由照相机的物理性质决定的。为了解决这个问题,美国Rice大学的一部分科学家正在试图开发一种新的摄影装置(被称为「单像素照相机」),争取用尽量少的感光元件实现尽量高分辨率的摄影。有的时候,第二个条件(也就是说有数学方法保证能够从不完整的数据中还原出信号)无法得到满足。这种时候,实践就走在了理论前面。人们已经可以在算法上实现很多数据重建的过程,但是相应的理论分析却成为了留在数学家面前的课题。
但是无论如何,压缩感知所代表的基本思路:从尽量少的数据中提取尽量多的信息,毫无疑问是一种有着极大理论和应用前景的想法。它是传统信息论的一个延伸,但是又超越了传统的压缩理论,成为了一门崭新的子分支。它从诞生之日起到今不过五年时间,其影响却已经席卷了大半个应用科学。