可积性
数学名词
数学上,可积函数是存在积分函数。除非特别指明,一般积分是指勒贝格积分黎曼可积黎曼积分
定义
数学上,可积函数是存在积分函数。除非特别指明,一般积分是指勒贝格积分黎曼积分
注意,函数可以有不定积分(反导数),而并不在如下的定义中可积。例如函数
是的不定积分,但是f(x)不是实数上的可积函数。这种情况在不定积分在每个方向都有极限的时候也可能成立,例如
其导数不是从1到无穷可积的。积分区间不是无穷的时候也会出现这种情况,譬如不定积分
其导数不是从0到1可积的。(无论f(x)在0点取何值,它都是在该点不连续的,而F'(0)无定义,所以微积分基本定理在[0, 1]上不适用。)
勒贝格
简述
给定集合X及其上的σ-代数σ和σ上的一个测度,实值函数f:X→R是可积的如果正部f和负部f都是可测函数并且其勒贝格积分有限。令
积分定义为
对于实数p≥ 0,函数f是p-可积的如果|f|是可积的;对于p= 1,也称绝对可积p-可和也是一样的意义,常用于f是一个序列,而μ是离散测度的情况下。
这些函数组成的L空间是泛函分析研究中的主要对象之一。
泛函分析
泛函分析(英语:Functional Analysis)是现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换(如傅立叶变换等)的性质的研究。这种观点被证明是对微分方程积分方程的研究中特别有用。
使用泛函这个词作为表述源自变分法,代表作用于函数的函数,这意味着,一个函数的参数是函数。这个名词首次被雅克·阿达马在1910年使用于这个课题的书中。是泛函分析理论的主要奠基人之一。然而,泛函的一般概念以前曾在1887年是由意大利数学家和物理学家维多·沃尔泰拉(Vito Volterra)介绍。非线性泛函理论是由雅克·阿达马的学生继续研究,特别是莫里斯·弗雷歇(Maurice Fréchet)可和列维(Levy)。雅克·阿达马还创立线性泛函分析的现代流派,并由弗里杰什·里斯和一批围绕着斯特凡·巴拿赫(Stefan Banach)的波兰数学家群体进一步发展。
从现代观点来看,泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔伯特空间,其上的范数由一个内积导出。这类空间是量子力学数学描述的基础。更一般的泛函分析也研究Fréchet空间和拓扑向量空间等没有定义范数的空间。
泛函分析所研究的一个重要对象是巴拿赫空间和希尔伯特空间上的连续线性算子。这类算子可以导出C*-代数和其他算子代数的基本概念。
平方可积
一个实变或者复变量的实值或者复值函数是在区间上平方可积的,如果其绝对值的平方在该区间上的积分是有限的。所有在勒贝格积分意义下平方可积的可测函数构成一个希尔伯特空间,也就是所谓的L空间,几乎处处相等的函数归为同一等价类。形式上,L是平方可积函数的空间和几乎处处为0的函数空间的商空间
这在量子力学上很有用,因为波函数必须在空间上平方可积才能从理论中得到物理可能解。
波函数
量子力学里,量子系统的量子态可以用波函数(英语:wave function)来描述。薛定谔方程设定波函数如何随着时间流逝而演化。从数学角度来看,薛定谔方程乃是一种波动方程,因此,波函数具有类似波的性质。这说明了波函数这术语的命名原因。
波函数是一种复值函数,表示粒子在位置、时间的概率幅,它的绝对值平方是在位置、时间找到粒子的概率密度。以另一种角度诠释,波函数是“在某时间、某位置发生相互作用的概率幅”。
波函数的概念在量子力学里非常基础与重要,诸多关于量子力学诠释像谜一样之结果与困惑,都源自于波函数。
参考资料
最新修订时间:2022-08-25 14:04
目录
概述
定义
勒贝格
参考资料