分子由一千个以上原子通过共价键结合形成,分子量可达几万至几百万,这类分子称为高分子,或称
高分子化合物。存在于自然界中的高分子化合物称为天然高分子,如淀粉、纤维素、棉、麻、丝、毛都是天然高分子,人体中的蛋白质、糖类、核酸等也是天然高分子。用化学方法合成的高分子称为合成高分子,如聚乙烯、
聚氯乙烯、
聚丙烯腈、聚酰胺(尼龙)等都是常用的
合成高分子材料。
定义
分子由一千个以上原子通过共价键结合形成,分子量可达几万至几百万,这类分子称为高分子,或称
高分子化合物。
存在于自然界中的高分子化合物称为天然高分子,如淀粉、纤维素、棉、麻、丝、毛都是天然高分子,人体中的蛋白质、糖类、核酸等也是天然高分子。
用化学方法合成的高分子称为合成高分子,如聚乙烯、
聚氯乙烯、
聚丙烯腈、聚酰胺(尼龙)等都是常用的
合成高分子材料。
高分子的原料
从农、林副产品、煤或石油中得到的有机小分子化合物作为单体,通过聚合反应可以合成高分子。具体的合成方法有加成聚合、缩合聚合和共聚合等。
加成聚合反应
含有重键的单体分子,如乙烯(C2H4)、氯乙烯(C2H3Cl)、丙烯(C3H6)、苯乙烯等,它们是通过加成聚合反应得到聚合物的。加聚反应后除了生成聚合物外,再没有任何其他产物生成,聚合物中包含了单体中全部原子,如聚乙烯、聚氯乙烯。
C2H4是平面对称分子,当一个Cl原子取代了C2H4分子中的一个H原子后,对称性被破坏了。C2H3Cl分子中若将带氯原子的碳原子看成是头,则不带氯的碳原子就是尾了。氯乙烯分子进行加成聚合反应时,可能产生三种情况:头-头、尾-尾连接;头-尾连接;混乱无序连接。第一种连接方式,相邻碳原子上有氯原子;第二种连接方式,碳原子上的氯原子是间隔开的;第三种连接方式是上述两种连接的混合。连接方式不同,所形成的
聚氯乙烯分子的结构不同,反映在性质上也就有差异。
在工业上利用加成聚合反应生产的合成高分子约占合成高分子总量的80%,最重要的有聚乙烯、聚氯乙烯、聚丙烯和聚苯乙烯等。
缩合聚合反应
含有双官能团或多官能团的单体分子,通过分子间官能团的缩合反应把单体分子聚合起来,同时生成水、醇、氨等小分子化合物,称为
缩合聚合反应,简称缩聚反应。如尼龙-66又称聚酰胺。用己二胺和己二酸作为单体,这两种单体分子之间通过脱水缩合,形成肽键,两端的氨基和羧基具有活性,可继续与单体分子缩合,最终形成长链状大分子聚合物,即聚酰胺。它的商品名称叫尼龙-66或锦纶-66,数字表示两种单体中碳原子的数目。把粘稠的
尼龙-66液体从抽丝机的小孔里挤出来,得到性能优异的尼龙-66合成纤维。日常生活中我们熟悉的“的确良”是
对苯二甲酸和乙二醇脱水缩合聚合而成的
聚酯纤维高分子,商品名称也叫涤纶,它有挺括不皱、易洗易干等特点。
缩合聚合反应在合成高分子工业上的重要性仅次于加聚反应,常见的聚酰胺(尼龙)、聚酯(涤纶)、环氧树脂、酚醛树脂、
有机硅树脂、
聚碳酸酯等,都是通过缩聚反应生产的。
共聚合反应
将两种或两种以上不同的单体进行聚合,得到的聚合物中含有两种或两种以上单体单元,这种聚合物叫做共聚物。合成共聚物的聚合反应称为共聚合反应。按照共聚物中单体分布的不同,可分为交替共聚、嵌段共聚、无规共聚和接枝共聚等。共聚合反应常用来改进合成高分子的性能,这种改进叫做结构改性。共聚物中单体单元的结构、数量和排列方式会影响共聚物的物理性能。例如
聚丙烯腈(腈纶)性如羊毛,但着色性差,若用1%的丙烯基磺酸钠与之共聚合后,腈纶纤维就可染成各种颜色。又如将丙烯腈(A)、丁二烯(B)和苯乙烯(S)进行共聚合制得的
ABS树脂,是一种综合性能极好的三元共聚物。
特性
合成高分子的主链主要是由碳原子以共价键结合起来的碳链,由于单键可以自由旋转,使线型长链高分子在旋转的影响下,整个分子保持直线状态的机率甚微。事实上线型长链高分子处于自然蜷曲的状态,分子纠缠在一起,因而具有可柔性。当有外力作用在分子上,蜷曲的分子可以被拉直,但外力一除去,分子又恢复到原来的蜷曲状态,因此合成高分子都有一定的弹性。
由于合成高分子都是长链大分子,又处于自然的蜷曲状态,所以不容易排列整齐成为周期性的晶态结构。与小分子不同,合成高分子不容易形成完整的晶体。然而在局部范围内,分子链有可能排列整齐,形成结晶态,即所谓短程有序。因此在高分子晶体中往往含有晶态部分和非晶态部分,故常用结晶度来衡量整个高分子中晶态部分所占的比例。晶态高分子的耐热性和机械强度一般要比非晶态高分子高,而且还有一定的熔点,所以要提高高分子的这些性质,就要设法提高高分子的结晶度。
高分子结构具有不均一性,或称多分散性,这一点与小分子结构是截然不同的。小分子的结构是确定的,分子量也是确定的。但对合成高分子来说,每个独立的高分子只要聚合度n确定了,分子量也就确定了。但在聚合反应中,得到的聚合物不是均一的,而是不同聚合度的高分子的混合物,因此在这种情况下无法确定高分子的分子量。实验测定高分子的分子量,只是试样中聚合度大小不一的高分子分子量的统计平均结果而已。
合成高分子的上述结构特点,使其具有热塑性、热固性、耐磨性、绝缘性、相对密度小、比强度高等特殊的性能。
长链型高分子被加热时,分子受热不均匀,有的部分已受热,有的部分受热少,甚至还有一部分没有受热。因此高分子加热后不是马上熔化变成液体,而是先经历一个软化过程再变为液体。当然,这是外因的作用,分子内部不均匀,也是一个重要的原因。液体冷却后,变硬成为固体,再次加热,它又能软化、流动。
线型高分子的这种性质称为热塑性,它不但使高分子材料便于加工,而且还可以多次重复操作。
单体进行聚合反应时,先形成线型高分子,在某种条件下分子链之间发生交联由线型转变为体型高分子。体型高分子加热后不会熔化、流动,当加热到一定温度时体型高分子的结构遭到破坏,这种性质称为热固性。因此体型高分子一旦加工成型后,不能通过加热重新回到原来的状态。
合成高分子中主要含C,H,O,N,S及卤素等元素,因此比金属材料轻得多。一般高分子相对密度在1~2之间,最轻的
聚丙烯塑料,相对密度只有0.91;泡沫塑料的相对密度只有0.01,比水轻100倍,是非常好的救生材料。高分子材料相对密度小,但强度高,有的
工程塑料的强度超过钢铁和其他金属材料。例如玻璃钢的强度比合金钢大1.7倍,比铝大1.5倍,比钛钢大1倍。由于质轻、强度高、耐腐蚀、价廉,所以高分子材料在不少场合已逐步取代金属材料的位置,全塑汽车的问世就是典型的例子。高分子材料为什么有这样高的强度呢?高分子的分子量大,分子中原子数目多,且分子链彼此缠绕在一起,因此分子链之间原子的接触点非常多,相互间的作用力很大。这种作用力称为
分子间作用力,或称范德华力。如果具备形成氢键的条件,分子链之间还可形成氢键。高分子中存在强大的分子间作用力是高分子材料具有高强度的主要原因。
高分子的分子链缠绕在一起,许多分子链上的基团被包在里面,当有试剂分子加入时,只有露在外面的基团容易与试剂分子作用,而被包在里面的基团不易反应,所以
高分子化合物的化学反应性能较差,对化学试剂显得比较稳定。高分子具有耐酸、耐腐蚀等特性,著名的“塑料王”
聚四氟乙烯,即使把它放在王水中煮也不会变质,其耐酸程度远超过金。聚四氟乙烯是优异的耐酸、耐腐蚀材料。
高分子中的分子链是原子以共价键结合起来的,分子既不能电离,也不能在结构中传递电子,所以高分子具有绝缘性,电线的包皮、电插座等都是用塑料制成。此外,高分子对多种射线如α,β,γ和X射线有抵抗能力,可以抗辐射。
命名
合成高分子的命名,一种是在单体前加“聚”字,如聚乙烯、聚氯乙烯等;另一种是在简化的单体名称后面加“树脂”二字,如酚醛树脂,它是由甲醛和苯酚缩聚得到的,又如脲醛树脂、环氧树脂等。商业上喜欢用商品名称,比较方便。
一些合成高分子的商品名称如下: