背景介绍
1996年的饮用水安全法修正案开创了预防饮用水污染的新纪元,其中强调了水源管理的重要性。在美国环保署(简称USEPA)提出的水资源评价计划中,要求对
水资源系统进行污染脆弱性评价(美国环保署,1997)。保护饮用水的第一步,是要对水源进行评价,考虑到地下水资源可能会受到某些污染,因此,在开展这项工作时,通常要与现有的
水资源保护规划结合起来进行。许多联邦、州和地方的水资源管理计划中,都考虑到了地下水的脆弱性评价问题,其中包括如何确定可持续饮用水源,对地下水进行杀菌消毒,杀虫剂管理计划,废弃物地下填埋和“幽禁的动物给食运作”(简称CAFO)等。美国国家研究院在1993年发表的一篇文章中,对政府、私人和学术机构进行地下水污染的脆弱性评价时所采用的一些方法进行了总结。根据特定的目标和可利用的资源,评价范围包括私人水井乃至整个含水层系统,研究对象可以是针对某种污染物或某类污染物,也可以是针对所有的污染物。
基本概况
随着整个美国对饮用水安全和生态健康需求的不断增加,政策决策者正面临着如何评价和管理水资源的问题。由于需要评价人为活动和天然污染源对地下水资源造成的可能污染,因此在政策制定和目标管理过程中面临着严峻的挑战。对地下水污染的脆弱性评价,既有费用相对较低的简单定性法,也有成本相对较高的严格定量评价法。必须针对水资源决策者的不同需求,认真分析评价成本、防御措施的科学性和可能存在的不确定性等因素。
地下水的科学防御方法
科学的方法是指系统而客观地获取知识的原则和过程,包括认识问题、通过观察和实验搜集资料、归纳和检验假设等。因此,科学方法不能只凭经验或主观判断,而是需要根据事实进行客观分析。科学的地下水脆弱性评价必须按照科学的方法,搜集大量的文献资料、观测数据和研究方法,从而得出可靠的结论。
地下水的固有敏感性和脆弱性
地下水系统的固有敏感性取决于含水层性质(水力传导系数、孔隙度和水力梯度),以及相关的水源和压力(补给、与地表水的相互作用、在非饱和带的迁移和井排泄)。因此,固有敏感性评价不能只针对特定的天然和人为污染源,相反,必须要考虑影响地表水和地下水流动的各种物理因素。
地下水资源对污染物的脆弱性取决于固有敏感性、天然和人为污染源的位置和类型、井的位置以及污染物的迁移转化。水资源决策者通常面临着两种选择,究竟是根据固有敏感性来管理水资源,还是根据更全面的地下水对特定污染物的脆弱性进行管理。
地下水流动系统概述
在天然条件下,地下水在三维空间内从补给区向排泄区流动,地下水由大气降水获得补给,通过非饱和带渗入地下饱和带;地下水的补给也可以通过地表水体获得。饱和带的地下水以泉、溪流、湖泊、湿地和植物蒸发蒸腾等形式进行排泄。这样,地下水从补给区到排泄区的三维流动水体就组成了地下水流动系统。地下水流动系统的面积从几平方米到上万平方米不等,地下水径流通道从几米到几百米不等。地下水流动系统的补给区和排泄区之间具有一定的水力联系。
不同的地下水流动系统,地下水的年龄(距补给的时间)也有所不同,从补给区到排泄区地下水的年龄稳定增加。在浅层地下水流动系统中,排泄区的地下水年龄从不足一天到几百年不等,而且补给区的地下水年龄要小于排泄区。在流动通道较长(几十英里)的地下水系统中,地下水的年龄会达到几千年或几万年(见图1)。埋深较浅和形成年代较晚的地下水对地表污染物较为敏感;而埋藏较深和形成年代较长的地下水则更容易在长期的流动的过程中接触某些天然存在的污染物。对地下水流向和流速的认识,有助于更好地理解地下水系统固有敏感性的发生机理。
地球化学系统
为了对地下水脆弱性进行全面评价,需要了解一些特定的污染物信息。本报告中所提及的“污染物”包括对人类健康或其它方面造成不利影响的所有天然和人为形成的物质。必须在天然的地球化学系统和地下水流动系统中考虑人类对污染源和污染物迁移转化的潜在影响。例如,如果土地利用方式(促进污染物迁移的方式)会对地下水流动系统造成一定影响,那幺水资源将更易受到污染物的影响。Welch等人(2000年)指出,人类活动会造成水井中砷浓度的升高。
特定的污染物信息包括:(1)潜在污染源信息;(2)目标污染物的化学性质;(3)污染物在地下水流动系统中的运移机制。
污染源
了解土地利用方式、潜在的污染源和地下水资源的固有敏感性之间在时间和空间上相互作用,是确定地球化学系统乃至于地下水对污染物脆弱性的关键。潜在的人为污染物通常位于地下水系统的边界上,污染物会随着补给水源进入地下水系统中。一些污染源,如防护性能较差的化粪池和储油罐,会造成严重的污染问题。天然污染源与含水层的岩性和地球化学条件相关联,有可能会出现在含水层的任何地区。
根据空间范围,通常可以将污染源划分为点状污染源和非点状污染源。点状污染源是指污染物通过某一特定位置释放出来,而非点状污染源是指通过大面积范围释放出来污染物。也可以根据时间范围,将污染源划分为连续性污染源和瞬时性污染源。连续性污染源是指污染物在长期范围内不断释放出来,而瞬时性污染源是指污染物只在某一时刻释放出来。污染源类型(点源、非点源、连续性污染源和瞬时性污染源)的分类,对于确定地下水系统中污染物浓度的时间和空间分布非常重要。在某些情况,点污染源与一个或多个非点状污染源的累积效应非常相似。
化学性质
污染物在地下水系统中的运移,会受到某些地球化学效应、放射性作用和活动性微生物的影响。某些化学变化会使某些有害污染物转化为毒害性较小的副产物,而另一些化学作用会使污染物产生的副产物毒性比母体更强,对生态系统和人类的危害也更大。某些放射性物质在天然衰减过程中,也会产生一些副产物,比母体的危害性更大(Focazio等,2000)。在某些情况下,会发现环境中的某些降解(转化)产物的危害远比母体大(Kolpin等,1997)。目前,地下水修复工作越来越关注天然衰减问题,在混合、水平对流和生物降解的共同作用下,污染物的浓度会越来越小(Chapelle等,2000)。与此类似,某些化学变化会使相对稳定的组分变成移动性较强的组分,将母体转化为某些副产物。了解地下水运动的通道和时间,以及污染物的化学性质和生物性质,是确定污染物迁移转化以及可能产生副产物的关键因素。对于可以迅速转化为其它产物的污染物,特别是转化的产物或子产物比母体毒性更大的污染物,这一点尤为重要。另外,地下水污染的脆弱性取决于污染物的溶解性和移动性,而移动性与含水层和抽水井特定的矿物学和地球化学条件有关。
弥散和扩散
弥散和扩散是污染物在地下水中重要的运移机制,在地下水运移过程中,这些机制可以将污染物带入到地下水系统中。运移过程中,在地下水系统的某些位置,污染物浓度可能会有所降低,而在另一些地区,污染物浓度却会有所增加。分子扩散是指溶质在浓度梯度的作用下,由浓度高处向浓度低处运动,致使液体中的溶质浓度趋于均匀。而弥散是指由于多孔介质中孔隙系统的存在,致使流体的微观速度在孔隙中的分布大小和方向都不均匀,流体质点的实际运动迂回曲折。弥散使得溶质的运动比单纯对流扩散的范围更广。
结论
科学家可以为水资源决策者提供地下水脆弱性评价和(或)固有敏感性的科学防御信息。可以通过定量或定性方法说明评价工作中存在的不确定性,从而增加成果图的有效性。应当将科学目标和管理目标严格区分开来,成功的地下水脆弱性评价与科学的防御分析相结合,可以满足科学目标需求,水资源决策者在此基础上辅以一些附加信息,可以满足管理目标的需求。