基因交流就是基因重新的组合,同一物种,不同物种都可以。同一物种间主要通过
有性生殖进行基因交流,但是不同种群间的个体,在
自然条件下基因不能自由交流,此现象叫做
隔离。
基本原理
基因重组是由于不同DNA链的断裂和连接而产生DNA片段的交换和重新组合,形成新
DNA分子的过程。
原核生物的基因重组有转化、转导和接合等方式。
受体细胞直接吸收来自供体细胞的DNA片段,并使它整合到自己的基因组中,从而获得供体细胞部分遗传性状的现象,称为
转化。通过噬菌体媒介,将供体细胞DNA片段带进受体细胞中,使后者获得前者的部分遗传性状的现象,称为转导。自然界中转导现象较普遍,可能是低等生物进化过程中产生新的基因组合的一种基本方式。供体菌和受体菌的完整细胞经直接接触而传递大段DNA遗传信息的现象,称为接合。细菌和
放线菌均有接合现象。高等动植物中的基因重组通常在有性生殖过程中进行,即在性细胞成熟时发生减数分裂时同源钱染色体的部分遗传物质可实现交换,导致基因重组。基因重组是
杂交育种的生物学基础,对生物圈的繁荣昌盛起重要作用,也是基因工程中的关键性内容。基因工程的特点是基因体外重组,即在离体条件下对DNA分子切割并将其与载体DNA分子连接,得到
重组DNA。1977年美国科学家首次用重组的人长激素释放抑制因子基因生产
人生长激素释放抑制因子获得成功。此后,运用基因重组技术生产医药上重要的药物以及在农牧业育种等领域中取得了很多成果,预计下世纪在生产治疗
心血管病、镇痛和清除血栓等药物方面基因重组技术将发挥更大的作用。
从广义上讲,任何造成基因型变化的基因交流过程,都叫做基因重组。而狭义的基因重组仅指涉及
DNA分子内断裂—复合的基因交流。真核生物在减数分裂时,通过
非同源染色体的自由组合形成各种不同的配子,雌雄配子结合产生基因型各不相同的后代,这种重组过程虽然也导致基因型的变化,但是由于它不涉及DNA分子内的断裂c复合,因此,不包括在狭义的基因重组的范围之内。
重组类型
根据重组的机制和对蛋白质因子的要求不同,可以将狭义的基因重组分为三种类型,即同源重组、
位点特异性重组和异常重组。同源重组的发生依赖于大范围的DNA同源序列的联会,在重组过程中,两条染色体或DNA分子相互交换对等的部分。真核生物的非姊妹染色单体的交换、细菌以及某些低等真核生物的转化、细菌的转导接合、噬菌体的重组等都属于这种类型。
大肠杆菌的同源重组需要
RecA蛋白,类似的蛋白质也存在于其他细菌中。位点特异性重组发生在两个DNA分子的特异位点上。它的发生依赖于小范围的DNA同源序列的联会,重组也只限于这个小范围。两个DNA分子并不交换对等的部分,有时是一个DNA分子整合到另一个DNA分子中。这种重组不需要RecA蛋白的参与。异常重组发生在顺序不相同的DNA分子间,在形成重组分子时往往依赖于DNA的复制而完成重组过程。例如,在转座过程中,转座因子从染色体的一个区段转移到另一个区段,或从一条染色体转移到另一条染色体。这种类型的重组也不需要RecA蛋白的参与。
如神舟5号带入太空的甜椒,经过宇宙射线的照射,发生了基因突变,成为了营养,产量大幅增长的太空椒。
基因重组的类型
基因重组是指一个基因的DNA序列是由两个或两个以上的亲本DNA组合起来的。基因重组是遗传的基本现象,病毒、原核生物和真核生物都存在基因重组现象。减数分裂或体
细胞有丝分裂均有可能发生基因重组。基因重组的特点是双DNA链间进行物质交换。真核生物,重组发生在
减数分裂期同源染色体的非姊妹染色单体间,细菌可发生在转化或转导过程中,通常称这类重组为同源重组(homologousrecombination),即只要两条DNA序列相同或接近,重组可在此序列的任何一点发生。然而在原核生物中,有时基因重组依赖于小范围的同源序列的联会,重组只限于该小范围内,只涉及特定位点的同源区,把这类重组称作
位点专一性重组(site-specificrecombination),此外还有一种重组方式,完全不依赖于序列间的同源性,使一段DNA序列插入另一段中,在形成重组分子时依赖于DNA复制完成重组,称此类重组为异常重组(illegitimaterecombination),也称复制性重组(replicativerecombination)。
噬菌体的基因重组
历史:1936年F.M.Burnet发表了噬菌体能产生突变体,其噬菌斑的外形和野生型的有明显区别,可惜的未能引起重视,以致噬菌体遗传学延迟了十年才得以建立。
1946年第11届冷泉港学术讨论会上,在宣布一基因一酶学说的胜利,及Ledernerg、Tatum细菌杂交实验报告的同时,Hershey和Luria宣布发现了噬菌体的r,h突变,Delbrück和Hershey发表了他们各自发现的噬菌体重组,这四项重大的发现分别在1958年和1969年获得了
诺贝尔奖。后两项的发现有力地推动了噬菌体遗传学的发展。
噬菌体的基因重组和细菌不同,而和真核的重组十分相似。杂交是用标记不同的噬菌体之间进行。然后计算重组噬菌体占总的子代噬菌体的比例来确定重组值。一般可以选用2-4个基因差异的噬菌体来混合感染细菌。首先把不同类型的噬菌体混合起来和细菌一起涂布在固体培养基上,细菌的浓度要达到可以长成菌苔(lawn)的水平,噬菌体的浓度要很稀。每个噬菌体感染一个细菌,经过裂解周期,
宿主细胞破裂后,释放出的子噬菌体又去感染周围的细菌,结果在菌苔上形成一个圆形清亮的斑,称为噬菌斑(plaque),而一个噬菌斑来自最初涂布平板时的一个噬菌体。噬菌斑的形态必须选择容易区别的,以表示噬菌体的相应表型。单个的噬菌体只能在电镜下才可观察其形态,突变引起其形态变化没有电镜是无法鉴别的,但突变影响到生活周期,会产生不同的噬菌斑,因此通过噬菌斑的观察我们很容易观察基因型的变化与重组。
Hershey等用
T2噬菌体的两个不同表型特征:噬菌斑的形态和
宿主范围来进行杂交。一个噬菌体的基因型是h+r,另一个噬菌体的基因型是hr+。h+表示宿主范围(hostrange),是野生型,能在E.coliB菌株上生长,r表示快速溶菌(rapidlysis),产生的噬菌斑大,边缘清楚。h噬菌体能在E.coliB和B/2品系上生长,r+产生小而边缘模糊的噬菌斑,能产生透明的噬菌斑,而h+因只能裂解E.coliB,所以在B和B/2的混合菌上产生的噬菌斑是半透明的。
杂交时hr+和h+r混合感染E.coliB和B/2,在B和B/2混合菌苔上出现了四种噬菌斑,表明hr+和h+r之间有一部分染色体在B菌株的细胞中进行了重组,释放出的子噬菌体有一部分的基因型为h+r+和hr。我们利用下面的公式就可以计算出和两个位点的重组值:
重组值=(h+r++hr)/总噬菌斑数×100%
此重组值也表示两个连锁基因之间的遗传距离。