大数律,即大数定律,是
概率论中讨论随机变量序列的算术平均值向
常数收敛的定律,是概率论与数理统计学的基本定律之一。大数律有弱大数律和强大数律之分。
简介
大数定律(law of large numbers),是一种描述当试验次数很大时所呈现的概率性质的定律。但是注意到,大数定律并不是经验规律,而是在一些附加条件上经严格证明了的定理,它是一种自然规律因而通常不叫定理而是大数“定律”。而我们说的大数定理通常是经数学家证明并以数学家名字命名的大数定理,如伯努利大数定理。
大数定律是指在随机试验中,每次出现的结果不同,但是大量重复试验出现的结果的平均值却几乎总是接近于某个确定的值。其原因是,在大量的观察试验中,个别的、偶然的因素影响而产生的差异将会相互抵消,从而使现象的必然规律性显示出来。例如,观察个别或少数家庭的婴儿出生情况,发现有的生男,有的生女,没有一定的规律性,但是通过大量的观察就会发现,男婴和女婴占婴儿总数的比重均会趋于50%。
分类
弱大数律和强大数律之分。
(1)弱大数律:设随机序列
独立同分布,并且 有限,则有:
通常把类似于该结论的称为弱大数律。
(2)强大数律:设随机序列独立同分布,并且,则有:
把类似于该结论的成为强大数律。
重要的大数律
大数定律有若干个表现形式。这里介绍高等数学概率论要求的常用的三个重要定律。
切比雪夫大数定理
设 ,....是一列相互独立的随机变量(或者两两不相关),他们分别存在期望 和方差 。若存在常数C使得: ,则对任意小的正数 ε,满足公式一:
将该公式应用于抽样调查,就会有如下结论:随着样本容量n的增加,
样本平均数将接近于总体平均数。从而为统计推断中依据样本平均数估计总体平均数提供了理论依据。
特别需要注意的是,切比雪夫大数定理并未要求 同分布,相较于后面介绍的
伯努利大数定律和
辛钦大数定律更具一般性。
伯努利大数定律
设μ是n次独立试验中事件A发生的次数,且事件A在每次试验中发生的概率为P,则对任意正数ε,有公式二:
该定律是
切比雪夫大数定律的特例,其含义是,当n足够大时,事件A出现的频率将几乎接近于其发生的概率,即频率的稳定性。在抽样调查中,用样本成数去估计总体成数,其理论依据即在于此。
辛钦大数定律
辛钦大数定律是一种常用的大数定律。设 为
独立同分布的随机变量序列,若 的数学期望存在,则服从大数定律,即对任意的ε>0,有公式三:
示例
例如,在重复投掷一枚硬币的随机试验中,观测投掷了n次硬币中出现正面的次数。不同的n次试验,出现正面的频率(出现正面次数与n之比)可能不同,但当试验的次数n越来越大时,出现正面的频率将大体上逐渐接近于1/2。又如称量某一物体的重量,假如衡器不存在系统偏差,由于衡器的精度等各种因素的影响,对同一物体重复称量多次,可能得到多个不同的重量数值,但它们的算术平均值一般来说将随称量次数的增加而逐渐接近于物体的真实重量。
几乎处处收敛与依概率收敛不同。生活例子:开始上课了,慢慢地大家都安静下来,这是几乎处处收敛。绝大多数同学都安静下来,但每一个人都在不同的时间不安静,这是依概率收敛。
还有大数定律在保险业应用也十分广泛。大数定律又称大数法则。人们在长期的实践中发现,在随机现象的大量重复中往往出现几乎必然的规律,即大数法则。此法则的意义是:风险单位数量愈多,实际损失的结果会愈接近从无限单位数量得出的预期损失可能的结果。据此,保险人就可以比较精确的预测危险,合理的厘定保险费率,使在保险期限内收取的保险费和损失赔偿及其它费用开支相平衡。大数法则是近代保险业赖以建立的数理基础。保险公司正是利用在个别情形下存在的不确定性将在大数中消失的这种规则性,来分析承保标的发生损失的
相对稳定性。按照大数法则,保险公司承保的每类标的数目必须足够大,否则,缺少一定的数量基础,就不能产生所需要的数量规律。但是,任何一家保险公司都有它的局限性,即承保的具有同一风险性质的单位是有限的,这就需要通过再保险来扩大风险单位及风险分散面。