尖峰电压属于
浪涌电压里的一种,持续时间极短但数值很高。电机、电容器和功率转换设备(如变速驱动器)是产生尖峰电压的主要因素。雷电击中室外的输电线路也会引起极危险的高能瞬变。它们会在低压电源电路中定期发生,峰值可能会达到数千伏。
在变频器的输出电压中,都含有高次谐波冲击电压。这些高次谐波冲击电压如长期作用于电动机线圈上,将会使电动机绕组的绝缘强度下降,特别是
PWM控制型变频器更为明显。
为了防止电动机绕组的绝缘过早老化或引起电动机、变频器的损坏,通常可以提供加接
输出电抗器的方法来减小在电动机端脚上的高次谐波冲击电压。当变频器与电动机之间的电缆线较长时,加装输出电抗器虽然可以减小负荷电流的峰值,但输出电抗器不能减小电动机端脚上的瞬变电压峰值。因此,一定要尽量缩短变频器与电动机之间的电缆线的长度。
(1)增加电抗器或滤波器:在连接
变频电动机电缆的两侧增加电抗器(
扼流圈)或滤波器,这样可以有效减缓电源端输出电压脉冲的上升速度。
(2)缩短电缆长度:在设计线路时,应尽量减少变频器与电动机之间电缆的长度。通过缩短电缆长度来降低两者之间的暂态波过程的
振荡周期,以此来降低电动机两端的过电压。
尖峰电压吸收电路是反激型开关电源必须的辅助电路。当开关电源的功率MOSFET由导通变成截止时,在
高频变压器的一次绕组上就会产生尖峰电压和感应电压。
尖峰电压吸收电路主要有三种设计方案:①利用
齐纳二极管和
超快恢复二极管(SRD)组成齐纳钳位电路;②利用阻容元件和超快恢复二极管组成的R、C、SRD软钳位电路;③由阻容元件构成RC缓冲吸收电路。尖峰电压吸收电路的典型结构如图2所示。吸收电路可以并联到
高频变压器的一次绕组上,也可连接在功率MOSFET的漏极与地线之间。
缓冲吸收电路和钳位电路具用于两种截然不同目的。如果错误使用,会对开关电源内的
功率管造成很大的损害。缓冲电路用于降低尖峰电压幅度和减小电压波形的变化率。这有利于功率管工作在安全工作区,还降低了所有
射频干扰辐射的频谱,从而减少射频辐射的能量。钳位电路仅用于降低尖峰电压的幅度,它没有影响电压波形的变化率。因此,它对减少射频干扰的作用不大,钳位电路的作用是防止功率管因电压过高造成
击穿。软钳位电路的参数选择合理时,可以同时起到钳位和缓冲的作用。