扩频(Spread Spectrum,SS)是将传输信号的
频谱(spectrum)打散到较其原始带宽更宽的一种通信技术,常用于无线通信领域。比较严格的定义则分成两个部分:
所谓扩展频谱通信,可简单表述如下:“扩频通信技术是一种信息传输方式,其信号所占有的频带宽度远大于所传信息必需的最小带宽;频带的扩展是通过一个独立的码序列来完成,用编码及调制的方法来实现的,与所传信息数据无关;在接收端则用同样的码进行相关同步接收、解扩及恢复所传信息数据”。
一、信号的频谱被展宽了。 我们知道,传输任何信息都需要一定的带宽,称为信息带宽。例如人类的语音的信息带宽为300Hz --- 3400Hz,电视图像信息带宽为数MHz。为了充分利用频率资源,通常都是尽量采用大体相当的带宽的信号来传输信息。在无线电通信中射频信号的带宽与所传信息的带宽是相比拟的。如用调幅信号来传送语音信息,其带宽为语音信息带宽的两倍;电视广播射频信号带宽也只是其视频信号带宽的一倍多。这些都属于窄带通信。一般的调频信号,或
脉冲编码调制信号,它们的带宽与信息带宽之比也只有几到十几。扩展频谱通信信号带宽与信息带宽之比则高达100 --- 1000,属于宽带通信。 为什么要用这样宽的频带的信号来传输信息呢? 这样岂不太浪费宝贵的频率资源了吗?
二、采用
扩频码序列调制的方式来展宽信号频谱。 我们知道,在时间上有限的信号,其频谱是无限的。例如很窄的脉冲信号,其频谱则很宽。信号的频带宽度与其持续时间近似成反比。1微秒的脉冲的带宽约为1MHz。因此,如果用限窄的脉冲序列被所传信息调制,则可产生很宽频带的信号。如下面介绍的
直接序列扩频系统就是采用这种方法获得扩频信号。这种很窄的脉冲码序列,其码速率是很高的,称为扩频码序列。这里需要说明的一点是所采用的扩频码序列与所传信息数据是无关的,也就是说它与一般的正弦载波信号一样,丝毫不影响信息传输的透明性。扩频码序列仅仅起扩展信号频谱的作用。
三、在接收端用相关解调来解扩 正如在一般的窄带通信中,已调信号在接收端都要进行解调来恢复所传的信息。在扩频通信中接收端则用与发送端相同的扩频码序列与收到的扩频信号进行相关解调,恢复所传的信息。换句话说,这种相关解调起到解扩的作用。即把扩展以后的信号又恢复成原来所传的信息。这种在发端把窄带信息扩展成宽带信号,而在收端又将其解扩成窄带信息的处理过程,会带来一系列好处。弄清楚扩频和解扩处理过程的机制,是理解扩频通信本质的关键所在。
直接序列扩频(英语:direct-sequence spread spectrum,DSSS),简称直扩(DS),是一种
调制技术。就是在发送端,直接用高码率的扩频码序列去扩展信号的频谱,在接收端,用相同的扩频码序列将信号解扩,把展宽的信号还原到原始状态。其名称中的“扩频”来自这样一个事实,即
载波信号发生设备的发射频率充满了整个带宽(
频谱)。在一些
IEEE 802.11标准中,使用了DSSS技术来调制信号。
跳频扩频(Frequency-hopping spread spectrum,FHSS)是扩频技术的一种;经由载波快速在不同
频率中切换,并在接收与发射端使用一种
伪随机的过程。
在二次世界大战时,公众形象为花瓶的
好莱坞艳星
海蒂·拉玛(Hedy Lamarr)提供了不停更换无线电频率以躲避干扰及侦察的概念,但是问题在于如何同步化(现代则可以使用计算机来同步);而前卫音乐家乔治·安塞尔(George Antheil)则提供了使用自动演奏钢琴的原理来达到发送端与收讯端同步的方法,两人共同发明了该技术,并于1942年8月11日获得
专利(美国专利 2,292,387)。但由于是花瓶演员及音乐家发明的技术,加上自动演奏钢琴的大体积,此项发想在当时难以说服军方使用。直到
晶体管发明以后,此技术才开始应用在军事上,一直到现代,海蒂·拉玛的天才才真正获得广泛的认同。
扩频原本应用在军事和情报系统,主要的概念是将数据信号扩展成较宽的频谱,使得信号不易被干扰和截取。后来技术开放,便应用到
CDMA(2G手机通信)、
无线局域网(WLAN,也就是
IEEE802.11系列)等领域。