希腊拉丁方阵(Graeco-Latin square)是两个拉丁方阵相正交所得到的方阵。
它跟数独一样,每一行、每一列都不会重复,并且每一个拉丁字母与每一希腊字母只配对一次,就称这两方阵互为正交(orthogonal),叠合后的方阵称为希腊拉丁方阵,拉丁方阵 n orders 就有 n-1 个正交方阵(orthogonal square)。
--------------------
Graeco-Latin square designs are sometimes useful to eliminate more than two sources of vaiability in an experiment. A Graeco-Latin design is an extension of the Latin sqare design, but one extra blocking variable is added for a total of three blocking variables.