干涉成像光谱仪是利用干涉原理获得一系列随光程差变化的干涉图样,通过反演可以得到目标物体的二维空间图像和一维光谱信息的仪器。干涉成像光谱仪有时间调制型和空间调制型两种。
基本信息
由于物质的光谱与它的属性密切相关,太阳光照射到月表后被漫反射,不同的物质将呈现不同的反射光谱,成像光谱仪就利用了这个原理,通过不同的反射光谱与已知的矿物典型多光谱序列图像进行比较,就可以得出探测目标矿物类型和含量信息。
干涉成像光谱仪原理是将目标的光分成两束,通过控制两束光的光
程差,并使两束光在感光元件处相遇发生干涉,从而获得的是一系列不同光程差得到的
干涉图样。干涉图样经过一些列的处理、反演后才能够得到物体的图像——光谱三维信息,即目标每一点的光谱曲线。
通过干涉成像光谱仪等探测设备对月球表面被观测元素和矿物、岩石数据的处理,可了解它们在月球表面相应位置、类型、含量和分布,并利用探测的结果可以绘制各元素的全月球分布图,发现月球表面资源富积区,为月球的开发利用提供有关资源分布的数据。
发展
干涉成像光谱技术的出现源于干涉光谱学的发展。1880年,迈克耳逊(iMhcelson)发明了以他的名字命名的干涉仪。后来瑞利首先认识到干涉仪所产生的干涉图(干涉条纹),可以通过傅里叶变换而得出其光谱,即干涉图与光谱之间存在着一种对应的傅里叶变换的数学运算关系,从而通过傅里叶积分变换的数学运算把干涉图(干涉条纹)与辐射光谱直接联系了起来,这一原理直接导致了干涉光谱技术的产生及其发展。RubenS等人曾在20世纪初采用双光束干涉仪首次实现了干涉图的准确实验测量,他们还根据假定的光谱分布计算了干涉图并和实验测得的光谱图进行了比较。20世纪50年代之后,随着傅里叶变换光谱学的飞速发展,英国的PeterFellgett于1949年第一次真正的从干涉图进行傅里叶积分变换数学计算获得了光谱图。
早期的干涉型成像光谱仪大多是基于
迈克耳逊干涉仪为原形发展起来的,这类仪器中均有一套高精度的动镜驱动系统,故称为时间调制干涉成像光谱仪(Temporarily Modulated Imaging Interferometer)。在实际应用中,时间调制干涉成像光谱仪暴露出两大缺点:一是动镜要求匀速,且对倾斜、晃动要求严格;二是对干涉图完成采样需要动镜运动一个周期,故不适合快速变化光谱测量。
90年代以来,随着面阵探测器的发展,国际上出现了空间调制干涉成像光谱技术(Spatially ModulatedImaging Interferometery,即SMII)或数字阵列扫描干涉光谱技术(Digital Array Scanned Imaging Interfer-ometey,即DASI),其具有代表性的方案有两类:一类是基于变形的Sagnac干涉仪为分光元件;另一类是以双折射晶体为分光元件。
干涉成像光谱技术
简介
1880年,迈克耳逊(iMhcelson)发明了以他的名字命名的干涉仪。后来瑞利首先认识到干涉仪所产生的干涉图(干涉条纹),可以通过傅里叶变换而得出其光谱,即干涉图与光谱之间存在着一种对应的傅里叶变换的数学运算关系,从而通过傅里叶积分变换的数学运算把干涉图(干涉条纹)与辐射光谱直接联系了起来,这一原理直接导致了干涉光谱技术的产生及其发展。RubenS等人曾在20世纪初采用双光束干涉仪首次实现了干涉图的准确实验测量,他们还根据假定的光谱分布计算了干涉图并和实验测得的光谱图进行了比较。20世纪50年代之后,随着傅里叶变换光谱学的飞速发展,英国的PeterFellgett于1949年第一次真正的从干涉图进行傅里叶积分变换数学计算获得了光谱图。干涉成像光谱技术的另一个重大发展和决定性的突破发生在20世纪60年代中期,随着Cooley发明的
快速傅里叶变换FFT算法的采用,大大较少了常规傅里叶变换的运算量,极大的提高了运算效率,几分钟即可完成原来需要几个小时才能完成的变换运算。另外,近年来计算机的普及实用和高速计算技术的发展,为干涉成像光谱技术的研究与发展奠定了基础和开辟了广阔的道路。
分类
成像光谱技术从原理上讲分为色散型和干涉型两大类:色散型成像光谱仪是利用色散元件(光栅或棱镜等)将复色光色散分成序列谱线,然后再用探测器测量每一谱线元的强度。而干涉型成像光谱仪是同时测量所有谱线元的
干涉强度,对干涉图进行逆傅里叶变换将得到目标的光谱图。
因色散型成像光谱仪中均含有入射狭缝,狭缝越窄,光谱分辨率越高,而进入系统的光通量就越少,即光谱分辨率和光通量成为色散型成像光谱仪中相互制约的一对矛盾。在干涉型成像光谱仪中同时测量的是所有谱元均有贡献的干涉强度,传统的干涉成像光谱仪中虽然也有狭缝(90年代后期发展的光谱仪中已去掉狭缝),但狭缝宽度不影响光谱分辨率,只决定于空间分辨率的要求。在满足
空间分辨率的前提下,狭缝可以较宽,从而使狭缝面积和视场角较大。理论分析表明,在具有相同分辨率的条件下,干涉型成像光谱仪的通量较色散型成像光谱仪高200倍左右,即光能利用率高1~ 2个数量级。
对具有M个光谱元的
光谱图,若其测量总时间为T,则对色散型光谱仪来说,每个谱元的测量时间必为T/ M;对干涉型光谱仪来说,M个光谱元(光谱通道)可同时测量,即测量每个光谱元的时间均为T。由于复原光谱信噪比与测量时间的平方根成正比,故干涉成像光谱仪的信噪比是色散型的倍。
综上所述,干涉型成像光谱仪与色散型成像光谱仪比较,具有高通量、多通道和较大
视场等优点。
应用
最初成像光谱仪的发展,主要是用于植被
遥感和地质矿物识别研究之用(Goetz等,1985)。但是随着成像光谱技术的深入研究,它己被广泛应用在大气科学、生态、地质、水文和海洋等学科中(Vanes&Goetz,1993)。
它在军事和民用领域,都有广泛的应用前景。在军事上,与可见光照相侦察技术相比,成像光谱技术对伪装、隐藏目标具有更强的发现能力,特别是近年来目标防御技术的发展,常使
可见光照相侦察技术失灵或失误。因此,成像光谱技术就成为一种具有重大发展价值的侦察手段,它能侦察出隐藏在树林中的火炮、坦克、车辆和井下发射架发射的火箭,除水面舰艇外,它还能发现水下航行的潜艇。这是因为任何武器系统总有热源,在它们运行时都会发出可见或不可见的光辐射(电磁辐射),而且因为各种武器系统以及地面物质都具有它们自己固有的发射和反射(散射)“特征光谱”,通过对特征光谱的分析,即可识别武器系统的类别或地面物质成份。
在民用方面,它可用于天文物理研究;地球资源普查:包括矿物资源、国土资源、森林资源、植被资源(农作物估产、病虫害)、海洋鱼类资源与海藻等;还可监视全球污染与灾害:包括
大气污染与
海洋污染、森林火灾、水涝灾害、土质碱化、
沙化等。