平均偏差
偏差取绝对值之和
平均偏差是数列中各项数值与其算术平均数离差绝对值的算术平均数。平均偏差是用来测定数列中各项数值对其平均数离势程度的一种尺度。平均偏差可分为简单平均偏差和加权平均偏差。
定义
在统计中,如果要反映出所有原数据间的差异,就要在各原数据之间进行差异比较,当原数据较多时,进行两两比较就很麻烦,因此需要找到一个共同的比较标准,取每个原数据值与标准值进行比较。这个标准值就是算术平均数
平均偏差就是每个原数据值与算术平均数之差的绝对值的均值,用符号A.D.(average deviation)表示。平均偏差是一种平均离差。离差是总体各单位的标志值与算术平均数之差。因离差和为零,离差的平均数不能将离差和除以离差的个数求得,而必须将离差取绝对数来消除正负号。
平均偏差是反映各标志值与算术平均数之间的平均差异。平均偏差越大,表明各标志值与算术平均数的差异程度越大,该算术平均数的代表性就越小;平均偏差越小,表明各标志值与算术平均数的差异程度越小,该算术平均数的代表性就越大。
平均偏差又有简单平均偏差和加权平均偏差之分。
计算
简单平均偏差
如果原数据未分组,则计算平均偏差的公式为:
该式称为简单平均偏差。
加权平均偏差
在分组情况下,平均偏差的计算公式为:
该式称为加权平均偏差。
参考资料
最新修订时间:2022-08-25 13:16
目录
概述
定义
参考资料