平行公理的推论
数学术语
平行公理的推论,数学术语,是指平行于同一直线的两条直线平行,提出者为希尔伯特欧几里得等。
定义
如果两条直线都与第三条直线平行,那么这两条直线也互相平行
即:平行于同一直线的两条直线平行。
平行公理
希尔伯特的《几何基础》的五组公理之一:过已知直线外一点有且只有一条直线与已知直线平行。任何两点都是平行的,任何一点与任何一平面都是平行的。
欧几里得的定义:如果一条线段与两条直线相交,在某一侧的内角和小于两直角和,那么这两条直线在不断延伸后,会在内角和小于两直角和的一侧相交。
证明
求证:平行于同一直线的两直线平行。
已知:直线a、b、c,a‖b,a‖c.
证明:假使b、c不平行
则b、c交于一点O
又因为a‖b,a‖c
所以过O有b、c两条直线平行于a
这就与平行公理矛盾
所以假使不成立
所以b‖c
同位角相等,两直线平行,可推出:
内错角相等,两直线平行。
同旁内角互补,两直线平行。
所以a‖b,a‖c, 所以 b‖c 。
所以 如果两条直线都与第三条直线平行,那么这两条直线也互相平行
参考资料
最新修订时间:2023-03-27 23:20
目录
概述
定义
平行公理
证明
参考资料