②电子扫描。如返束光导管电视
摄像机,属像面扫描方式。其过程是光学成像于光导管靶面,经电子束扫描后将信号放大输出。
①工作波段约在0.38~14.0微米,范围大,并可灵活确定波段划分数量及
波段带宽。
另一个意义是在相同的视场范围下,高分辨率能够提供更多的细节。无论是CCD和
CMOS芯片都在向高分辨率发展,提高分辨率的方法一是增加芯片晶元的尺寸,二是缩小像元尺寸,以在同样面积的晶元上获得更多的图像像素。
相机的像元尺寸可以从20μm到2.8μm,Sony公司称即将推出1.2μm的芯片,主要的集中在9μm到4μm之间。但通过像元尺寸的缩小来增加相机分辨率的趋势并不是无限制的,由于像元尺寸越小对
光学镜头的要求越高,同时芯片的生产工艺越复杂,生产成本越高,因此这种趋势必将逐渐减缓。
速度是CCD相机的另一个重要要求,CCD工业相机主要应用在配合工业产品线的装配引导和质量检查,随着现代生产效率的不断提升,对CCD相机的成像速度,机内的处理速度都有越来越高的要求。
在特殊的高速故障诊断、运动分析和过程监控中,要求相机能够达到500-2000fps的帧频,随着CMOS的技术的不断发展,通过ROI窗口设置,可以轻松找到7500fps的图像。而在普通的工业应用中100-200fps的相机也已经不再是很难找到的产品。
高图像质量一直是成像芯片所追求的目标,尽管之前CCD在图像质量上有先天的优势,但随着CMOS技术的发展,提高高图像质量的
CMOS芯片已经成为可能。CMOS光刻技术已可以达到0.25μm和0.18μm,微透镜技术已经被广泛使用,采用4T、5T和MultiT技术,使CMOS芯片在抗噪声和提高灵敏度方面取得了很多重大突破。