放射性钴是压水堆核电站的主要液态放射性流出物,Co因其半衰期较长 (5.27a)、γ射线能量高 (平均 1.25MeV)而更具有环境毒理学意义, 在核反应堆中辐照钴产生的钴一 60 ,是一种 半衰期为5.26 年的强γ辐射源。 它应用于辐射治疗、医药制剂、 器械杀菌以及为大型金属工件的质量控制进行γ射线照相。
介绍
在核反应堆中辐照钴产生的钴一 60 ,是一种半衰期为5.26 年的强γ辐射源。 它应用于辐射治疗、医药制剂、 器械杀菌以及为大型金属工件的质量控制进行γ射线照相。
放射性钴是压水堆核电站的主要液态放射性流出物.其中Co因其半衰期较长(5.27a)、γ射线能量高(平均1.25MeV)而更具有环境毒理学意义.本研究探索了Co进入土壤后在菜豆-土壤系统中的迁移、分配动态过程,以为评价放射性钴对生态环境可能产生的影响提供参考 。
吸收与积累
材料与方法
供试材料
试验用土壤采自农场 .经风干后,于Υ20cm×20cm的陶瓷盆钵中装入5.0kg.装土前,每盆拌入2g(NH4)2SO4和KHPO4,盆钵分成7组,每组2只重复 。试验用Co制剂是CoCl2水液,其比活度为3.25×10Bq/ml(1996-10-29).1.2Co的引入每盆种植生长基本均一的菜豆苗2株.于始花期一次性引入CoCl2水液.方法是:将前述60CoCl2水液1.00ml用水稀释成100ml后均匀浇灌于盆土表面,再各用100ml水清洗容器4次,也灌浇于盆土表面.试验在网室中进行.
样品采集与Co活度测定
采样时间分别于Co引入后1、3、5、8、11、15和20天进行.每次取1组.方法是,先用半筒式不锈钢取土器沿盆钵径向取分布均匀的3个土柱,再将土柱约每2cm横向均等分割,计7段.然后将菜豆植株连根拔起,清水洗净豆根,分根、茎叶和豆荚(可食时采取),各经称重、剪碎后于大约550℃马弗炉中灰化8h;土样经烘干、研碎后过筛(粒经<0.6mm);各测样均取适量于FJ-2003A型计数器上作Co活度测定.探测效率(标称值)为53.1%,测定的相对标准差约5%.
分析与讨论
Co在菜豆植株中的分配动态
60Co进入表土后,在系统内因吸附、固定和螯合而导致它在系统各部分中含量发生变化,其测定结果如表1所示.其整株(鲜样)中Co比活度(单位为Bq/g)系按各部位中的活度及质量加权折算而得.由表1可见,进入土壤表面的Co随土壤溶液向下迁移,被根细胞吸收后在根部积累,然后向地上部输运,在菜豆各部位进行分配.对可菜食鲜豆荚的测定表明,其中Co比活度为0.94Bq/g左右.可见,菜豆植株各部位中Co比活度的大小顺序是:C根>C茎叶>C鲜豆荚.比如,根部Co比活度最大值为43.5Bq/g,最小也有29.7Bq/g,茎叶中最大比活度为3.0Bq/g,最小仅为1.4Bq/g,而鲜豆荚不过1Bq/g.所以,菜豆植株所吸收的Co主要集中在根部,这和前人的试验结果是一致的.
表160Co在菜豆植株中的分配动态*
*未列入可菜食鲜豆荚测量值;**包括可菜食鲜豆荚测量值
Co在土壤中的垂直分布动态
60Co在土壤(干土)中的比活度随土壤深度及时间的动态变化如表2所示.
表2表明:(1)对同一层段(2cm)不同处理的土壤,随着时间的延长,表层4cmCo的比活度基本上逐渐降低,4cm以下大体上呈增高趋势.这主要是由于淋溶作用,Co由表层向下
迁移,时间长,迁移得多,同时由于盆钵底部的阻留,致使最底层段Co的比活度往往高于上一层段.(2)由于土壤的强吸附作用,对同一处理的土壤,Co由表层向底层迅速降低,有90%以上的Co集中于表层6cm.回归分析表明,不同处理土壤(干土)中Co的比活度C与距表层深度x间呈单项指数负相关:C=Te
T(Bq/g)、β(cm)值与时间的相关性列于表3,由各β值求得在本研究条件下Co在土壤中的半残留深度约为2cm.
Co在菜豆-土壤系统中的迁移模型
菜豆对土壤中Co的吸收、积累与时间的定量关系可通过示踪动力学分室模型原理得到.试验系统由菜豆和土壤构成,即可将系统视为二分室系统;而由于试验系于室外网室中进行,降雨和浇灌造成Co淋溶损失,故系统是开放的.q1、m1、C1分别表示土壤中Co的量(Bq)、土壤质量(g)及土壤(干土)中Co的比活度(Bq/g),q2、m2、C2则表示菜豆植株相应的量;k12、k21分别表示Co由土壤向菜豆及菜豆向土壤的迁移速率,它表示单位时间内Co迁移量的相对份额(/天),k1表示Co向系统外迁移(淋失)的速率.一般将k12、k21和k1视为常数.
应用
放射性钴在模拟水稻田中的迁移模型
介绍
由于核电站反应堆中子的作用,反应堆中结构材料铁(59Fe)、镍(58Ni)分别生成了放射性60Co、58Co,但60Co具有更为重要的毒理学意义。本研究采取模拟污染物的核素示踪技术研究了60Co进入田水后,在田水-土壤-水稻中的迁移和积累动态,以为评价其对环境可能产生的影响提供依据。
材料与方法
1.160Co的转化与配制
所用示踪剂60Co为铝壳包装的1mm×2mm的钴粒(点源),由中国原子能研究院提供,出厂时(1996-10-29)比活度为3.19×10Bq/mg。使用前转化为CoCl2。方法是,加入适量稀盐酸,于~80℃水浴中加热,待其缓慢溶解后转移至100ml容量瓶中,用水定容;使用时稀释成比活度为3.25×105Bq/ml的工作母液。
1.2试验方法
采用25×25cm塑料盆钵。内装事先拌入基肥2.7g(NH4)2SO4、32gKH2PO4风干的杭州华家池小粉土8.0kg,其理化参数请见文献[1]。灌水(表面水约1500ml)。每盆种植水稻(品种:加育293)3丛,每丛5株。于插秧后1、3、6、11、20、29、38、47、56、65和74d,一次性由表水引入等量的60CoCl2水液(3.25×10Bq),各3只重复。最后一次引入距收获1d。于是60Co引入时间距收获天数相应为74、65、56、47、38、29、20、11、6、3和1d。于水稻成熟时一次性收获、取样。取样次序是,取田表水适量;收割水稻地上部,分草、稻谷;用半筒式取土器,每盆取3只土柱,然后约每3cm纵向分割,计7段;最后取出稻根,用水洗净。稻谷烘干后脱壳分谷壳和糙米。
经过上述初步处理后,田表水采用挥发法,土壤采用干粉法,水稻各部位采用灰化法(在马弗炉中于~800℃灰化8h),分别测定各样品中60Co活度。所有测样均3只重复。测定的相对标准差不大于10%。
结果与分析
60Co在水-土壤-水稻系统各组分中的消长动态
60Co进入田表水后,便被土壤强烈吸附[2],水稻植株主要通过根部从土壤中吸收60Co,然后运转至地上部。60Co在系统各组分中浓度的动态变化如表1所示。土壤中60Co浓度系指整盆土壤的平均浓度。时间表示60Co引入距收获的天数(下同)。
表1模拟水稻田各组分中Co浓度的动态变化
测定结果表明,60Co在系统各组分的浓度大小顺序是:水稻植株(干样)>土壤(干土)>田表水。但由于土壤质量(8.0kg/盆)远大于水稻植株(~100g/盆干样),故进入水稻田中的60Co主要滞留于土壤;而就水稻各部位而言,60Co浓度大小为:根>稻草>稻壳>糙米(表2)。由于作物主要通过根部从土壤中吸收60Co,因此一般是地下部60Co浓度远大于地上部[3],本研究结果与此一致。其次,相对于水稻的其它部位,糙米中Co的浓度较低,但在t<11d食用才是安全的,t>11d,则需经历一定的安全等待期才可食用。
表2水稻各部位中60Co浓度(Bq/g干样)的动态变化
其次,随着距收获时间的延长,田表水中Co浓度急速地下降;土壤中的Co浓度也基本上呈下降趋势。这是由于60Co在土壤中较易被吸附、固定或螯合。被吸附的60Co由交换态和非交换态组成,由于土壤处于淹水状态,加之土壤呈酸性(pH6.0),故除了水溶性钴之外,交换态钴及有机螯合物可能发生浸提和溶解作用,使得钴有向下垂直迁移的趋向,也使得水稻根部能不断地从土壤中吸收钴而运转至其它部位。实际上,本研究Co系由田水引入,若是因某种因素(比如核事故)Co进入土壤,则它在水稻各部位中的积累要低得多 。就是说进入水体的60Co的潜在危害要比滞留于土壤中的危害大得多。这里应说明,由于试验是在露天下进行的,因雨水等关系,致田表水常有溢出,而致60Co在系统中有所损失,这也是随时间延长,土壤中Co的平均浓度下降的又一原因。
Co在土壤中的垂直分布
各处理的土壤中Co浓度(Bq/g干土)探深度分布的测定结果列于表3。
由表3可见,对同一处理,土壤中Co的浓度随深度急速地降低。回归分析表明,土壤中Co浓度随离表层深度x呈单项指数负相关,相关系数在-0.6952~-0.9302之间,它们在T=0.10~0.01水平上显著。
应该指出,大多数处理的底层土壤中60Co浓度有升高的趋势,这主要是由于在淹水条件下,上层土壤中的60Co不断向下迁移、积累的缘故。
水稻对60Co的浓集作用
表1已经表明,相对于田表水和土壤,水稻植株对土壤中钴的浓集作用与60Co引入距收获时间成正相关,其浓集系数 Ks由1d的1.24至74d的29.72,与其相应的糙米对土壤中钴的浓集系数则为7×10-4和0.1。至于对田表水中的Kw值,水稻植株由1d的37.2至74d的3064.4,糙米则相应为0.02和10.1;实际上,本试验条件下,当t>20d后,糙米的Kw值皆大于1。
Co在水-土壤-水稻中的迁移模型
Co在水-土壤-水稻系统中迁移、输运的动态过程可用封闭三分室模型原理描述。通常认为,示踪剂(60Co)的迁移服从一级速率过程,当作一定简化,便得各分室中60Co量对时间的变化率相应为: