数据挖掘工具
Data Mining Tools
数据挖掘工具, IP与多媒体,识别数据模式来扩大传统分析工具。
工具分类
数据挖掘工具根据其适用的范围分为两类:专用挖掘工具和通用挖掘工具。
专用工具
专用数据挖掘工具是针对某个特定领域的问题提供解决方案,在涉及算法的时候充分考虑了数据、需求的特殊性,并作了优化。对任何领域,都可以开发特定的数据挖掘工具。例如,IBM公司的AdvancedScout系统针对NBA的数据,帮助教练优化战术组合。特定领域的数据挖掘工具针对性比较强,只能用于一种应用;也正因为针对性强,往往采用特殊的算法,可以处理特殊的数据,实现特殊的目的,发现的知识可靠度也比较高。
通用工具
通用数据挖掘工具不区分具体数据的含义,采用通用的挖掘算法,处理常见的数据类型。例如,IBM公司Almaden研究中心开发的QUEST系统,SGI公司开发的MineSet系统,加拿大SimonFraser大学开发的DBMiner系统。通用的数据挖掘工具可以做多种模式的挖掘,挖掘什么、用什么来挖掘都由用户根据自己的应用来选择。
主要因素
数据挖掘是一个过程,只有将数据挖掘工具提供的技术和实施经验与企业的业务逻辑和需求紧密结合,并在实施的过程中不断的磨合,才能取得成功,因此我们在选择数据挖掘工具的时候,要全面考虑多方面的因素,主要包括以下几点:
(1) 可产生的模式种类的数量:分类,聚类,关联等
(2) 解决复杂问题的能力
(3) 操作性能
(4) 数据存取能力
(5) 和其他产品的接口
参考资料
最新修订时间:2016-11-03 17:07
目录
概述
工具分类
参考资料