在
几何学中,斯图尔特定理(Stewart's theorem)给出了边长和三角形中的cevian长度之间的关系,它的名字是为了纪念苏格兰数学家马修斯图尔特(Matthew Stewart),他在1746年发表了这个定理,与
阿波罗尼奥斯定理相关。
在几何学中,斯图尔特定理表示了一个三角形中切氏线(cevian),连结一个顶点和对边上任意一点的线段的长度和三角形三边长的关系。它由苏格兰
数学家Matthew Stewart在1746年发表,故得名。
可以使用带符号的
线段长度更加对称地写出该定理。即,取长AB为正或负,根据 到 是向左或右来选取。在这个公式中,该定理指出,如果 , 和 是共线点, 是任意点,那么
在特殊情况下,cevian是
中位数(也就是说,它将相反的一侧划分为两个相等长度的段),结果称为
阿波罗尼奥斯定理。
设 是 和 之间的角度, 是 和 之间的
角度,然后 是 的
补角,因此 ,根据角度在两个小三角形余弦定理 和 产生公式如下:
或者可以通过绘制从三角形顶点到基底的
垂线来证明该定理,并使用
毕达哥拉斯定理以高度来写出距离 、 和 ,然后等式左侧和右侧的代数地减少到相同的表达式。
本定理可以用于各种三角形内切氏线的求长,而无论其位置。取定理的特殊情况,即可轻易求出三角形的
中线长、
高线长、
角平分线长。