旋光
物理现象
通过某些物质,偏振面发生了旋转,这个现象称为旋光现象。这些物质所具有的这种性质成为旋光效应或旋光性。旋光角度与晶体旋光率有关,旋光率越大,角度越大。旋光角度还与晶体的厚度成正比。旋光效应满足光路可逆性。
简介
通过某些物质,偏振面发生了旋转,这个现象称为旋光现象。这些物质所具有的这种性质成为旋光效应或旋光性。旋光角度与晶体旋光率有关,旋光率越大,角度越大。旋光角度还与晶体的厚度成正比。旋光效应满足光路可逆性。
晶体
晶体是原子离子分子按照一定的周期性,在结晶过程中,在空间排列形成具有一定规则的几何外形的固体
晶体的分布非常广泛,自然界的固体物质中,绝大多数是晶体。气体液体非晶物质在一定的合适条件下也可以转变成晶体。
晶体内部原子或分子排列的三维空间周期性结构,是晶体最基本的、最本质的特征,并使晶体具有下面的通性:
法拉第效应
物理学,法拉第效应(又叫法拉第旋转)是一种磁光效应(magneto-optic effect),是在介质光波磁场的一种相互作用。法拉第效应会造成偏振平面的旋转,这旋转与磁场朝着光波传播方向的分量呈线性正比关系。
于1845年,麦可·法拉第发现了法拉第效应。这是最先揭示光波和电磁现象之间关系的实验证据。由于法拉第效应显示出,在穿过介质时,偏振光波会因为外磁场的作用,转变偏振的方向,因此,麦克斯韦认为磁场是一种旋转现象。这效应给予麦克斯韦重要的启发。在于1861年发表的巨作《论物理力线》第四部分,为了突显出自己设计的“分子涡流模型”的威力,他应用这模型来推导出法拉第效应。在1870年代,詹姆斯·麦克斯韦进一步发展出电磁辐射(包括可见光)的基础理论。大多数对于光波呈透明状况的介质(包括液体),当感受到磁场作用时,会出现这种效应。
法拉第效应会使得左旋圆偏振光波与右旋圆偏振光波各自以不同的速度传播于某些介质,这性质称为圆双折射。由于线性偏振可以分解为两个圆偏振部分的叠加,而这两个圆偏振部分之间的振幅相同、螺旋性(helicity)不同、相位不同,法拉第效应所感应出的相对的相移,会造成线性偏振取向的旋转。
法拉第效应可以应用于测量仪器。例如,法拉第效应被用于测量旋光度、或光波的振幅调变、或磁场的遥感。在自旋电子学里,法拉第效应被用于研究半导体内部的电子自旋的极化。法拉第旋转器(Faraday rotator)可以用于光波的调幅,是光隔离器与光循环器(optical circulator)的基础组件,在光通讯与其它激光领域必备组件。
参见
参考资料
最新修订时间:2022-08-25 16:02
目录
概述
简介
晶体
参考资料