时域(Time domain)是描述
数学函数或
物理信号对时间的关系。例如一个信号的时域波形可以表达信号随着时间的变化。
时域是描述
数学函数或
物理信号对时间的关系。例如一个信号的时域波形可以表达信号随着时间的变化。
在电子学、
控制系统及
统计学中,频域(frequency domain)是指在对
函数或
信号进行分析时,分析其和
频率有关部分,而不是和
时间有关的部分,和
时域一词相对。
函数或信号可以透过一对数学的运算子在时域及频域之间转换。例如
傅里叶变换可以将一个时域信号转换成在不同频率下对应的振幅及相位,其频谱就是时域信号在频域下的表现,而反傅里叶变换可以将频谱再转换回时域的信号。
以信号为例,信号在
时域下的图形可以显示信号如何随着时间变化,而信号在频域下的图形(一般称为
频谱)可以显示信号分布在哪些频率及其比例。频域的表示法除了有各个频率下的大小外,也会有各个频率的
相位,利用大小及相位的资讯可以将各频率的弦波给予不同的大小及相位,相加以后可以还原成原始的信号。
许多物理元件的特性会随着输入讯号的频率而改变,例如电容在低频时阻抗变大,高频时阻抗变小,而电感恰好相反,高频时阻抗变大,低频时阻抗变小。一个线性非时变系统的特性也会随频率而变化,因此也有其频域下的特性,
频率响应的图形即为其代表。
频率响应可以视为是一个系统在输入信号振幅相同、频率不同时,其输出信号振幅的变化,可以看出系统在哪些频率的输出较大。
不论是进行拉普拉斯转换、
Z转换或是
傅立叶变换,其产生的频谱都是一个频率的复变函数,表示一个信号(或是系统的响应)的振幅及其
相位。不过在许多的应用中相位的资讯并不重要,若不考虑相位的资讯,都可以将频谱的资讯只以不同频率下的振幅(或是功率密度)来表示。
功率谱密度是一种常应用在许多非周期性也不满足平方可积性(square-integrable)讯号的频域表示法。只要一个讯号是符合广义平稳随机过程的输出,就可以计算其对应的功率谱密度。