有效数字
分析工作中实际能够测量到的数字
具体地说,有效数字是指在分析工作中实际能够测量到的数字。能够测量到的是包括最后一位估计的,不确定的数字。 我们把通过直读获得的准确数字叫做可靠数字;把通过估读得到的那部分数字叫做存疑数字。把测量结果中能够反映被测量大小的带有一位存疑数字的全部数字叫有效数字。测得物体的长度5.15cm。数据记录时,我们记录的数据和实验结果真值一致的数据位便是有效数字。
相关规则
舍入规则
1.当保留n位有效数字,若第n+1位数字≤4就舍掉。
2.当保留n位有效数字,若第n+1位数字≥6时,则第n位数字进1。
3.当保留n位有效数字,若第n+1位数字=5且后面数字为0时 ,则第n位数字若为偶数时就舍掉后面的数字,若第n位数字为奇数时加1;若第n+1位数字=5且后面还有不为0的任何数字时,无论第n位数字是奇或是偶都加1。
以上称为“四舍六入五留双”
如将下组数据保留一位小数:
45.77≈45.8;43.03≈43.0;0.26647≈0.3;10.3500≈10.4;
38.25≈38.2;47.15≈47.2;25.6500≈25.6;20.6512≈20.7
有效数字
从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。
就是一个数从左边第一个不为0的数字数起到末尾数字为止,所有的数字(包括0,科学计数法不计10的N次方),称为有效数字。简单的说,把一个数字前面的0都去掉,从第一个正整数到精确的数位止所有的都是有效数字了。
如:0.0109,前面两个0不是有效数字,后面的109均为有效数字(注意,中间的0也算)。
3.109*10^5(3.109乘以10的5次方)中,3 1 0 9均为有效数字,后面的10的5次方不是有效数字。
5.2*10^6,只有5和2是有效数字。
0.0230,前面的两个0不是有效数字,后面的230均为有效数字(后面的0也算)。
1.20 有3个有效数字。
1100.120 有7位有效数字。
2.998*10^4(2.998乘以10的4次方)中,保留3个有效数字为3.00*10^4。
对数的有效数字为小数点后的全部数字,如log x=1.23有效数字为2.3,log a=2.045有效数字为0、4.5,pH=2.35有效数字为3.5。
整体遵循“四舍五入”的方法
计算规则
加减法
以小数点后位数最少的数据为基准,其他数据修约至与其相同,再进行加减计算,最终计算结果保留最少的位数。
例:计算50.1+1.4+0.5812=
修约为:50.1+1.4+0.6=52.1
乘除法
以有效数字最少的数据为基准,其他有效数修约至相同,再进行乘除运算,计算结果仍保留最少的有效数字。
例:计算0.0121×25.64×1.05728=
修约为:0.0121×25.6×1.06=
计算后结果为:0.3283456,结果仍保留为三位有效数字。
记录为:0.0121×25.6×1.06=0.328
例:计算2.5046×2.005×1.52=
修约为:2.50×2.01×1.52=
当把1.13532×10⒑保留3个有效数字时,结果为1.14×10⒑
运算中若有π、e等常数,以及√2.1/2等系数,其有效数字可视为无限,不影响结果有效数字的确定。
一般来讲,有效数字的运算过程中,有很多规则.为了应用方便,本着实用的原则,加以选择后,将其归纳整理为如下两类。
一般性入手规则(初一有出现题目)
⑴可靠数字之间运算的结果为可靠数字。
⑵可靠数字与存疑数字,存疑数字与存疑数字之间运算的结果为存疑数字。
⑶测量数据一般只保留一位存疑数字。
具体深层规则
(初学者可间接掌握,不可急着掌握,容易忘记)
⑴有效数字相加(减)的结果的末位数字所在的位置应按各量中存疑数字所在数位最前的一个为准来决定。例如:
30.4 26.65
+ 4.325 - 3.905
34.725 22.745
取30.4+4.325=34.7,26.65-3.905=22.75。
⑵乘(除)运算后的有效数字的位数与参与运算的数字中有效数字位数最少的相同。
由此规则⑵可推知:乘方,开方后的有效数字位数与被乘方和被开方之数的有效数字的位数相同。
⑶指数,对数,三角函数运算结果的有效数字位数由其改变量对应的数位决定。例如:中存疑数字为0.08,那么我们将的末位数改变1后比较,找出发生改变的位置就能得知。
⑷有效数字位数要与不确定度位数综合考虑.
一般情况下,表示最后结果的不确定度的数值只保留1位,而最后结果的有效数字的最后一位与不确定度所在的位置对齐.如果实验测量中读取的数字没有存疑数字,不确定度通常需要保留两位。
但要注意:具体规则有一定适用范围,在通常情况下,由于近似的原因,如不严格要求可认为是正确的。
乘方
乘方的有效数字和底数相同。
例:(0.341)^2=1.16×10^-2
不确定度
有效数字的末位是估读数字,存在不确定性.一般情况下不确定度的有效数字只取一位,其数位即是测量结果的存疑数字的位置;有时不确定度需要取两位数字,其最后一个数位才与测量结果的存疑数字的位置对应。
由于有效数字的最后一位是不确定度所在的位置,因此有效数字在一定程度上反映了测量值的不确定度(或误差限值)。测量值的有效数字位数越多,测量的相对不确定度越小;有效数字位数越少,相对不确定度就越大.可见,有效数字可以粗略反映测量结果的不确定度。
例子:d=(10.430±0.3)是不对的,只能写成d=(10.4±0.3)
正确表示
1.有效数字中只应保留一位欠准数字,因此在记录测量数据时,只有最后一位有效数字是欠准数字。
2.在欠准数字中,要特别注意0的情况。0在非零数字之间与末尾时均为有效数;在小数点前或小数点后均不为有效数字。如 0.078 和 0.78 与小数点无关,均为两位有效数字。如 506 和 220 都为3位有效数字。但当数字为 220.0 时称为4个有效数字。
3.π等常数,具有无限位数的有效数字,在运算时可根据需要取适当的位数
具体说明
⑴实验中的数字与数学上的数字是不一样的。如
数学的 8.35=8.350=8.3500,
而实验的 8.35≠8.350≠8.3500。
⑵有效数字的位数与被测物的大小和测量仪器精密度有关。如前例中测得物体的长度为5.15cm,若改用千分尺来测,其有效数字的位数有五位。
⑶第一个非零数字前的零不是有效数字。
⑷第一个非零数字以及之后的所有数字(包括零)都是有效数字。
⑸当计算的数值为lg或者pH、pOH等对数时,由于小数点以前的部分只表示数量级,故有效数字位数仅由小数点后的数字决定。例如lgx=9.04为2位有效数字,pH=7.355为三位有效数字。
⑹当特别地,当第一位有效数字为8或9时,因为与多一个数量级的数相差不大,可将这些数字的有效数字位数视为比有效数字数多一个。例如8.314是五位有效数字,96845是六位有效数字。
⑺单位的变换不应改变有效数字的位数。因此,实验中要求尽量使用科学计数法表示数据。如100.2m可记为0.1002km。但若用cm和mm作单位时,数学上可记为10020cm和100200mm,但却改变了有效数字的位数,这是不可取的,采用科学计数法就不会产生这个问题了。
准确测量
有效数字
为了取得准确的分析结果,不仅要准确测量,而且还要正确记录与计算。所谓正确记录是指记录数字的位数。因为数字的位数不仅表示数字的大小,也反映测量的准确程度。所谓有效数字,就是实际能测得的数字。
有效数字保留的位数,应根据分析方法与仪器的准确度来决定,一般使测得的数值中只有最后一位是可疑的。例如在分析天平上称取试样0.5000g,这不仅表明试样的质量0.5000g,还表明称量的误差在±0.0002g以内。如将其质量记录成0.50g,则表明该试样是在台称上称量的,其称量误差为0.02g,故记录数据的位数不能任意增加或减少。如在上例中,在分析天平上,测得称量瓶的重量为10.4320g,这个记录说明有6位有效数字,最后一位是可疑的。因为分析天平只能称准到0.0002g,即称量瓶的实际重量应为10.4320±0.0002g,无论计量仪器如何精密,其最后一位数总是估计出来的。因此所谓有效数字就是保留末一位不准确数字,其余数字均为准确数字。同时从上面的例子也可以看出有效数字是和仪器的准确程度有关,即有效数字不仅表明数量的大小而且也反映测量的准确度。
物质 质量(g)有效数字位数
称量瓶 10.14306位
Na2CO3 2.1045 5位
H2C2O4·2H2O 0.21044位
称量纸 0.01203位
以上数据中“0”所起的作用是不同的。在10.1430中两个“0”都是有效数字,所以它有6位有效数字。在2.1045中的“0”也是有效数字,所以它有5位有效数字。在0.2104中,小数前面的“0”是定值用的,不是有效数字,而在数据中的“0”是有效数字,所以它有4位有效数字。在0.0120中,“1”前面的两个“0”都是定值用的,而在末尾的“0”是有效数字,所以它有3位有效数字。
综上所述,数字中间的“0”和末尾的“0”都是有效数字,而数字前面所有的“0”只起定值作用。以“0”结尾的正整数,有效数字的位数不确定。例如4500这个数,就不会确定是几位有效数字,可能为2位或3位,也可能是4位。遇到这种情况,应根据实际有效数字书写成:
4.5×103 2位有效数字
4.50×103 3 位有效数字
4.500×103 4 位有效数字
因此很大或很小的数,常用10的乘方表示。当有效数字确定后,在书写时一般只保留一位可疑数字,多余数字按数字修约规则处理。
对于滴定管、移液管和吸量管,它们都能准确测量溶液体积到0.01mL。所以当用50mL滴定管测定溶液体积时,如测量体积大于10mL小于50mL时,应记录为4位有效数字。例如写成24.22;如测定体积小于10mL,应记录3位有效数字,例如写成8.13 mL。当用25mL移液管移取溶液时,应记录为25.00mL;当用5mL吸取关系取溶液时,应记录为5.00mL。当用250mL容量瓶配制溶液时,所配溶液体积应即为250.0mL。当用50mL容量瓶配制溶液时,应记录为50.00mL。
总而言之,测量结果所记录的数字,应与所用仪器测量的准确度相适应。
数字修约规则
我国科学技术委员会正式颁布的《数字修约规则》,通常称为“四舍六入五成双”法则。四舍六入五考虑,即当尾数≤4时舍去,尾数为6时进位。当尾数4舍为5时,则应是末位数是奇数还是偶数,5前为偶数应将5舍去,5前为奇数应将5进位。
这一法则的具体运用如下:
a. 将28.175和28.165处理成4位有效数字,则分别为28.18和28.16。
b. 若被舍弃的第一位数字大于5,则其前一位数字加1,例如28.2645处理成3为有效数字时,其被舍去的第一位数字为6,大于5,则有效数字应为28.3。
c. 若被舍其的第一位数字等于5,而其后数字全部为零时,则是被保留末位数字为奇数或偶数(零视为偶),而定进或舍,末位数是奇数时进1,末位数为偶数时不进1,例如28.350、28.250、28.050处理成3位有效数字时,分别为28.4、28.2、28.0。
d. 若被舍弃的第一位数字为5,而其后的数字并非全部为零时,则进1,例如28.2501,只取3位有效数字时,成为28.3。
e. 若被舍弃的数字包括几位数字时,不得对该数字进行连续修约,而应根据以上各条作一次处理。如2.154546 ,只取3位有效数字时,应为2.15,二不得按下法连续修约为2.16:
2.154546→2.15455→2.1546→2.155→2.16
有效数字运算规则
前面曾根据仪器的准确度介绍了有效数字的意义和记录原则,在分析计算中,有效数字的保留更为重要,下面仅就加减法和乘除法的运算规则加以讨论。
a. 加减法:在加减法运算中,保留有效数字的以小数点后位数最小的为准,即以绝对误差最大的为准,例如:
0.0121+25.64+1.05782=?
正确计算不正确计算
0.01 0.0121
25.64 25.64
+ 1.06 + 1.05782
——————— ———————
26.71 26.70992
上例相加3个数字中,25.64中的“4”已是可疑数字,因此最后结果有效数字的保留应以此数为准,即保留有效数字的位数到小数点后面第二位。
b. 乘除法:乘除运算中,保留有效数字的位数以位数最少的数为准,即以相对位数最大的为准。例如:
0.0121×25.64×1.05782=?
以上3个数的乘积应为:
0.0121×25.6×1.06=0.328
在这个计算中3个数的相对误差分别为:
E%=(±0.0001)/0.0121×100=±8
E%=(±0.01)/25.64×100=±0.04
E%=(±0.00001)/1.05782×100=±0.0009
显然第一个数的相对误差最大(有效数字为3位),应以它为准,将其他数字根据有效数字修约原则,保留3位有效数字,然后相乘即可。
c. 自然数,在分析化学中,有时会遇到一些倍数和分数的关系,如:
H3PO4的相对分子量/3=98.00/3=32.67
水的相对分子量=2×1.008+16.00=18.02
在这里分母“3”和“2×1.008”中的“2”都还能看作是一位有效数字。因为它们是非测量所得到的数,是自然数,其有效数字位数可视为无限的。
在常见的常量分析中,一般是保留四位有效数字。但在水质分析中,有时只要求保留2位或3位有效数字,应视具体要求而定。
识别有效数字
简明规则
所有非零数字都是有效的1,2,3,4,5,6,7,8,9。
非零数字之间的零点数大于102,2005,50009。
前导零从不重要..0.02,1.0887,51.05。
在一个带小数点的数字中,尾随零(最后一个非零数字的右侧)是重要的.2.02000,5,400,57.5400
在没有小数点的数字中,尾随零可能或可能不显着。需要通过附加图形符号或显式错误信息获得更多信息,以澄清尾随零的意义。
重要数字规则解释
具体来说,编写或解释数字时识别有效数字的规则如下:
所有非零数字都被认为是重要的。例如,91有两个有效数字(9和1),而123.45有五个有效数字(1,2,3,4和5)。
出现在两个非零数字之间的零点的零是很重要的。示例:101.1203有七个有效数字:1,0,1,1,2,0和3。
前导零并不重要。例如,0.00052有两个有效数字:5和2。
包含小数点的数字中的尾随零值很大。例如,12.2300有六个有效数字:1,2,2,3,0和0.数字0.000122300仍然只有六个有效数字(1之前的零不重要)。此外,120.00有五个有效数字,因为它有三个尾随零。这个惯例澄清了这些数字的精度;例如,如果将精确到四位小数位(0.0001)的测量值给出为12.23,那么可以理解,只有两位精度小数位可用。将结果表示为12.2300,表明精确到四位小数(在这种情况下,六个有效数字)。
在不包含小数点的数字中,尾随零的含义可能不明确。例如,如果一个1300号的数字对于最近的单位是精确的(并且恰巧巧合地是一百的确切倍数),或者如果由于四舍五入或不确定性仅显示为最接近的百分点,则可能并不总是清楚的。存在许多解决这个问题的惯例:
有时也称为超栏,或者不太准确地说,一个vinculum可以放在最后一个有效数字上;跟随此后的任何尾随零都是微不足道的。例如,1300有三个有效数字(因此表明数字精确到最接近十)。
不常使用一个密切相关的公约,可以强调一个数字的最后一个重要数字;例如,“2000”有两个重要的数字。
小数点后可放置数字;例如“100.”具体指出三个重要数字是指[3]
在数量和单位测量的组合中,可以通过选择合适的单位前缀来避免歧义。例如,指定为1300克的质量的有效数字是不明确的,而质量为13 hg或1.3 kg则不是。
然而,这些约定并不是普遍使用的,并且通常需要从上下文中确定这样的尾随零是否意在是重要的。如果全部失败,可以明确指定舍入级别。缩写s.f.有时使用,例如“20 000 to 2 s.f.”或“20 000(2 sf)”。或者,不确定性可以单独和明确地用正负号来表示,如20 000±1%,因此不重要的数字规则不适用。这也允许指定十次幂之间的精度(或编号系统的基本功率的任何值)。
科学计数法
在大多数情况下,同样的规则适用于以科学计数表示的数字。但是,按照该符号的标准化形式,不会出现占位符的前导和后置数字,因此所有数字都是重要的。例如,0.00012(两个有效数字)变为1.2×10-4,0.00122300(六个有效数字)变为1.22300×10-3。特别地,消除了尾随零的意义的潜在模糊性。例如,1300〜4个有效数字为1.300×103,而1300〜2个有效数字为1.3×103。
包含有效数字(与基数或指数相反)的表示部分称为有效数或尾数。
参考资料
最新修订时间:2024-06-04 08:15
目录
概述
相关规则
参考资料