《有限群的表示论》是2016年
世界图书出版公司出版的著作,作者是Benjamin Steinberg 。
内容简介
《有限群的表示论》是一部为大学高年级本科生和低年级研究生编写的教科书,内容主要涉及群表示论的各个方面。阅读本书所需背景知识包括线性代数,群论、环论基础知识,书中有意省略模理论,Wedderburn理论和张量积等内容,取而代之的加入离散傅里叶分析。
目录
1 Introduction
2 Review of Linear Algebra
2.1 Basic Definitions and Notation
2.2 Complex Inner Product Spaces
2.3 Further Notions from Linear Algebra
3 Group Rep resentations
3.1 Basic Definitions and First Examples
3.2 Maschke's Theorem and Complete Reducibility
4 Character Theory and the Orthogonality Relations
4.1 Morphisms of Representations
4.2 The Orthogonality Relations
4.3 Characters and Class Functions
4.4 The Regular Representation
4.5 Representations of Abelian Groups
5 Fourier Analysis on Finite Groups
5.1 Periodic Functions on Cyclic Groups
5.2 The Convolution Product
5.3 Fourier Analysis on Finite Abelian Groups
5.4 An Application to Graph Theory
5.5 Fourier Analysis on Non—abelian Groups
6 Bumside's Theorem
6.1 A Little Number Theory
6.2 The Dimension Theorem
6.3 Burnside's Theorem
7 Group Actions and Permutation Representations
7.1 Group Actions
7.2 Permutation Representations
7.3 The Centralizer Algebra and Gelfand Pairs
8 Induced Representations
8.1 Induced Characters and Frobenius Reciprocity
8.2 Induced Representations
8.3 Mackey's Irreducibility Criterion
9 Another Theorem of Burnside
9.1 Conjugate Represen tations
10 Representation Theory of the Symmetric Group
10.1 Partitions and Tableaux
10.2 Constructing thelneducible Representations
11 Probability and Random Walks on Groups
11.1 Probabilities on Groups
11.2 Random Walks on Finite Groups
11.3 CardShuffling
11.3.1 The Riffle Shuffle
11.4 The Spectrum and the Upper Bound Lemma
References
Index