极点配置
数学术语
通过比例环节的反馈把定常线性系统的极点移置到预定位置的一种综合原理
极点配置
pole assignment
定常线性系统的动态特性在很大程度上取决于它的传递函数矩阵(见传递函数)的极点在复数平面(表示复数 s=x+jy的直角坐标平面)上的位置。
对于一个给定的系统,能否和如何用比例反馈方法把极点移置到指定的位置,这既是一个理论问题,同时也是一个方法问题。
传统的输出反馈方法虽然也能改变系统极点的位置,但有很大的局限性。对于单输入单输出情况,输出反馈只能使极点在根轨迹曲线上变动,而不能把它们移到其他位置上去(见根轨迹法)。采用状态反馈方法可以实现极点的任意配置。
意义
掌握用极点配置法把系统的闭环极点配置到希望的极点位置上,从而获得良好的系统性能指标。
极点配置的实质是用比例反馈去改变原系统的自由运动模式,以满足设计规定的性能要求。由于输出反馈在技术上容易实现,用输出反馈方法配置极点的问题颇引人注意,但已得到的结果尚很不成熟。
定理
给定一个定常线性系统 (A,B,C)(见线性系统理论),则在采用反馈增益矩阵 K(即比例环节)实现状态反馈后,闭环系统就变成为(A-BK,B,C)。闭环系统的特征多项式即是行列。
极点配置问题就归结为对于指定的 n个期望极点s1,s2,…,sn(n是系统的维数)确定一个适当的反馈增益矩阵K,使下式成立:
只要原系统(A,B,C)是能控(见能控性)的,则这样的反馈增益矩阵K就一定可以找到。反馈增益矩阵K的求解,对于单输入单输出情况,已有较为简单的计算公式;对于一般的多输入多输出情况,计算步骤要复杂得多,往往需要采用计算机来处理。
由于输出反馈在技术上容易实现,用输出反馈方法配置极点的问题颇引人注意,但已得到的结果尚很不成熟。
状态反馈
状态空间中的极点配置设计方法是基本的设计方法之一。如果系统是完全状态可控的,那么,要求的Z平面上闭环极点可以选择,并且,以这些极点为闭环极点的系统可以设计。这种在Z平面设置期望的闭环极点的设计方法,称为极点配置设计法。
在极点配置设计方法中,将反馈全部状态变量,使得全部闭环极点均设置在各期望的位置上。然而,实际的控制系统中,量测到全部状态变量是不可能的,不是全部状态变量都可以用于反馈。为了实现状态反馈,估计这些未知的状态变量是很必要的,这种估计可以用状态观测器进行。
假设系统的全部状态变量都可以量测,并且都能用于反馈。如果系统是完全状态可控的,那么,用状态反馈的方法,适当地选择状态反馈增益矩阵,可以将闭环系统的极点配置在Z平面的任何期望的位置。
首先必须指出,状态空间中,任意极点配置的充分且必要的条件是,系统必须是完全状态可控的。
配置方法
如果已知系统的模型或传递函数,通过引入某种控制器,使得闭环系统的极点可以移动到指定的位置,从而使系统的动态性能得到改善,这种方法称为极点配置法。
有一控制系统其中a>b>0,要求设计一个控制器,使系统稳定,
解:(1)校正前,闭环系统的极点: s-a+s+b=0
s= > 0
因而控制系统不稳定。
(2)在控制对象前串联一个一阶惯性环节 , c>0,则闭环系统极点:
显然,当 c-a+1>0,b-ac>0时,系统可以稳定。但此对参数 c 的选择依赖于 a 、 b 。因而,可
选择控制器 , c 、 d ,则有特征方程:
当b+d+c>a , 时,系统稳定。
本例由于原开环系统不稳定,因而不能通过简单的零极点相消方式进行控制器的设计,其原因在于控制器的参数在具体实现中无法那么准确,从而可能导致校正后的系统仍不稳定。
最新修订时间:2024-06-18 16:32
目录
概述
极点配置
意义
参考资料