在
概率论概念中,随机过程是
随机变量的
集合。若一
随机系统的
样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。实际应用中,样本函数的一般定义在时间域或者空间域。随机过程的实例如股票和汇率的波动、
语音信号、
视频信号、体温的变化,反对法随机运动如
布朗运动、
随机徘徊等等。
通常,指标集合T代表时间,以实数或整数表示。以实数形式表示时,随机过程称为连续随机过程;以整数表示时,则为离散随机过程。随机过程中的参数只为分辨同类随机过程中的不同实例,如上文下理不构成误会,通常略去。例如表达单次元布朗运动时,常以表达,但若考虑两同时进行布朗运动的粒子,则会分别以和(或作和)表示。
为了了解金融市场和研究布朗运动,在19世纪后期人们开始研究随机过程。第一个用数学语言描述布朗运动的是数学家Thorvald N. Thiele。 他在1880年发表了第一篇关于布朗运动的文章。随后,在1900年,Louis Bachelier的博士论文“投机理论” 提出了股票和期权市场的随机分析。
阿尔伯特·爱因斯坦(在他1905年的一篇论文中)和玛丽安·一维Smoluchowski(1906年)从物理界的角度出发,把它作为了一种间接证明了原子和分子的存在。他们所描述的布朗运动方程在1908年被
让·佩兰核实。
假定所有函数f的空间概率测度:存在,那么它可以被用来指定有限维随机变量的
联合概率分布。从这个n维概率分布,我们可以推断出第(n - 1)维边缘概率为。但是需要注意的是兼容性状态,即这种边际概率分布是在相同的类作为1从完全成熟的随机过程衍生。例如,如果该随机过程是一个Wiener过程(在这种情况下,边缘是指数类的所有高斯分布),但不是在一般对所有的随机过程。这种方程称为查普曼-洛夫方程。
柯尔莫哥洛夫扩展定理保证了随机过程的有限维概率分布满足查普曼 - 柯尔莫哥洛夫的兼容性条件的存在..
回想一下,在洛夫公理化中存在对于概率问题有还是没有的不确定性。柯尔莫哥洛夫扩展首先声明是可衡量的功能,其中有限多个坐标被限制在中可测量的子集所有集合。如果一个是/否有关的问题都可以通过观察至多有限多个坐标的值回答,那么它有一个概率的答案。
给定一个概率空间,过滤是一个弱增长对σ-代数在集合一些全序集T,上界由决定。即对于s,t 且s
自然过滤
给定一个随机过程。在这个过程中,需要过滤这里的这个通过和时间s=t产生。举个例子,一个随机过程总是适应其自然过滤。