植被指数,根据植被的光谱特性,将卫星可见光和近红外波段进行组合,形成了各种植被指数。植被指数是对地表植被状况的简单、有效和经验的度量,已经定义了40多种植被指数,广泛地应用在全球与区域土地覆盖、植被分类和环境变化,第一性生产力分析,作物和牧草估产、干旱监测等方面;并已经作为全球气候模式的一部分被集成到交互式生物圈模式和生产效率模式中;且被广泛地用于诸如饥荒早期警告系统等方面的陆地应用;植被指数还可以转换成叶冠生物物理学参数。
综述
在遥感应用领域,植被指数已广泛用来定性和定量评价植被覆盖及其生长活力。由于植被光谱表现为植被、土壤亮度、环境影响、阴影、土壤颜色和湿度复杂混合反应,而且受大气空间—时相变化的影响,因此植被指数没有一个普遍的值,其研究经常表明不同的结果。该指数随生物量的增加而迅速增大。比值植被指数又称为绿度,为二通道反射率之比,能较好地反映植被覆盖度和生长状况的差异,特别适用于植被生长旺盛、具有高覆盖度的植被监测。
归一化植被指数为两个通道反射率之差除以它们的和。在植被处于中、低覆盖度时,该指数随覆盖度的增加而迅速增大,当达到一定覆盖度后增长缓慢,所以适用于植被早、中期生长阶段的动态监测。蓝光、红光和近红外通道的组合可大大消除大气中气溶胶对植被指数的干扰,所组成的抗大气植被指数可大大提高植被长势监测和作物估产精度。
发展史
设计植被指数的目的是要建立一种经验的或半经验的、强有力的、对地球上所有生物群体都适用的植被观测量。植被指数是无量纲的,是利用叶冠的光学参数提取的独特的光谱信号。1969年Jordan提出最早的一种植被指数———比值植被指数(RVI)
RVI=ρn/ρr
ρn和ρr分别是近红外波段和红光波段的反射率。但对于浓密植物反射的红光辐射很小,RVI将无限增长。
指数特点
植被指数主要反映植被在
可见光、近红外
波段反射与土壤背景之间差异的指标,各个植被指数在一定条件下能用来定量说明植被的生长状况。在学习和使用植被指数时必须由一些基本的认识:
1.健康的绿色植被在NIR和R的反射差异比较大,原因在于R对于绿色植物来说是强吸收的,NIR则是高反射高透射的
2.建立植被指数的目的是有效地综合各有关的光谱信号,增强植被信息,减少非植被信息
3.植被指数有明显的地域性和时效性,受植被本身、环境、大气等条件的影响
研究对象
RVI比值植被指数
RVI=NIR/R,或两个波段反射率的比值。
1.绿色健康植被覆盖地区的
RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。植被的RVI通常大于2;
2.RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量
3.植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低;
4.RVI受大气条件影响,
大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。
NDVI
归一化植被指数
NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。
1.NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;
2.-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对
可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大
3.NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。对于同一幅图象,分别求
RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高
植被区具有较低的灵敏度;
4.NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯叶、粗糙度等,且与植被覆盖有关
GVI
绿度植被指数
k-t变换后表示绿度的分量。
2.kt变换后得到的第一个分量表示土壤亮度,第二个分量表示绿度,第三个分量随传感器不同而表达不同的含义。如,MSS的第三个分量表示黄度,没有确定的意义;TM的第三个分量表示湿度。
3.第一二分量集中了>95%的信息,这两个分量构成的二位图可以很好地反映出植被和土壤光谱特征的差异。
4.GVI是各波段
辐射亮度值的加权和,而辐射亮度是
大气辐射、
太阳辐射、环境辐射的综合结果,所以GVI受外界条件影响大。
PVI
垂直植被指数
在R-NIR的
二维坐标系内,植被像元到土壤亮度线的垂直距离。PVI=((S R-VR)2(SNIR-VNIR)2)1/2,S是土壤反射率,V是植被反射率。
1.较好地消除了土壤背景的影响,对大气的敏感度小于其他VI
2.PVI是在R-NIR二维数据中对GVI的模拟,两者
物理意义相同
3.PVI=(DNnir-b)cosq-DNr´sinq,b是土壤基线与NIR
截距,q是土壤基线与R的夹角。
SAVI
土壤调节植被指数
Huete(1988)基于NDVI和大量观测数据提出土壤调节植被指数用以减小土壤背景影响。
SAVI=(NIR-R)*(1+L)/(NIR+R+L)
其中,L是随着植被密度变化的参数,取值范围从0-1,当植被覆盖度很高时为0,很低时为1。很明显,如果L=0,SAVI=NDVI。在Huete的文章中指出,对于其研究的草地和棉花田,L取0.5时SAVI消除土壤反射率的效果较好。因为很少能够知道植被密度,因此难以优化此指数。
SAVITSAVIMSAVI——调整土壤亮度的植被指数:SAVI=((NIR-R)/(NIR+R+L))(1+L),或两个波段反射率的计算。
1.目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0~1。L=0时,表示土壤背景的影响为零,即植被覆盖度非常高,土壤背景的影响为零,这种情况只有在被树冠浓密的高大树木覆盖的地方才会出现。
2.SAVI仅在土壤线参数a=1,b=0(即非常理想的状态下)时才适用。因此有了TSAVI、ATSAVI、MSAVI、SAVI2、SAVI3、SAVI4等改进模型。
DVIEVI
差值环境植被指数
DVI=NIR-R,或两个波段反射率的计算。
1.对土壤背景的变化极为敏感
小结:上述几种VI均受土壤背景的影响大。植被非完全覆盖时,土壤背景影响较大
遥感数据反演植被指数
植被指数(DVI)是检测植被生长状态、植被覆盖度和消除部分辐射误差等。NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯叶、粗糙度等,且与植被覆盖有关。多种卫星遥感数据反演植被指数(NDVI)产品是
地理国情监测云平台推出的生态环境类系列数据产品之一。
模型算法
NDVI的估算上采用通用的估算方法,并已通过
中国科学院地理科学与资源所相关专家的判读与野外实测数据验证,空间一致性良好。
◆TM/ETM算法如公式(1):NDVI=(Band4-Band3)/(Band4+Band3)
◆Modis算法如公式(2):NDVI=(Band2-Band1)/(Band2+Band1)
◆AVHRR算法如公式(3):NDVI=(CH2-CH1)/(CH2+CH1)
学科分支
1.根据具体情况改进型:如MSS的DVI = B4-aB2,PVI=(B4-aB2-b)/(1+a2)1/2,SARVI = B4/(B2+b/a);RDVI=(NDVI´DVI)1/2等
2.应用于高光谱数据的VI,如CARI(叶绿素吸收比值指数)和CACI(叶绿素吸收连续区指数)等
VI划分
类型 典型代表 特点
线性DVI 低LAI时,效果较好;LAI增加爱时对土壤背景敏感
比值型 NDVI、
RVI增强了土壤与植被的反射对比
垂直型 PVI 低LAI时,效果较好;LAI增加爱时对土壤背景敏感