模糊计算
人工智能领域术语
模糊计算以模糊集理论为基础,它可以模拟人脑非精确、非线性的信息处理能力,在许多应用领域内都有用途。人们通常可以用“模糊计算”笼统地代表诸如模糊推理(FIS,Fuzzy Inference System)、模糊逻辑(Fuzzy Logic)、模糊系统等模糊应用领域中所用到的计算方法及理论。在这些系统中,广泛地应用了模糊集理论,并揉和了人工智能的其他手段,因此模糊计算也常常与人工智能相联系。
简介
由于模糊计算方法可以表现事物本身性质的内在不确定性,因此它可以模拟人脑认识客观世界的非精确、非线性的信息处理能力。亦此亦彼的模糊逻辑。
举例
美国西佛罗里达大学的詹姆斯教授曾举过一个鲜明的例子。假如你不幸在沙漠迷了路,而且几天没喝过水,这时你见到两瓶水,其中一瓶贴有标签:“纯净水概率是0.91”,另一瓶标着“纯净水的程度是0.91”。你选哪一瓶呢?相信会是后者。因为后者的水虽然不太干净,但肯定没毒,这里的0.91表现的是水的纯净程度而非“是不是纯净水”,而前者则表明有9%的可能不是纯净水。再比如“人到中年”,就是一个模糊事件,人们对“中年”的理解并不是精确的一个岁数。
模糊性
模糊逻辑不是二者逻辑——非此即彼的推理,它也不是传统意义的多值逻辑,而是在承认事物隶属真值中间过渡性的同时,还认为事物在形态和类属方面具有亦此亦彼性、模棱两可性——模糊性。正因如此,模糊计算可以处理不精确的模糊输入信息,可以有效降低感官灵敏度和精确度的要求,而且所需要存储空间少,能够抓住信息处理的主要矛盾,保证信息处理的实时性、多功能性和满意性。
隶属函数
美国加州大学L.A.Zadeh博士于1965年发表了关于模糊集的论文,首次提出了表达事物模糊性的重要概念——隶属函数。这篇论文把元素对集的隶属度从原来的非0即1推广到可以取区间【0,1】的任何值,这样用隶属度定量地描述论域中元素符合论域概念的程度,就实现了对普通集合的扩展,从而可以用隶属函数表示模糊集。模糊集理论构成了模糊计算系统的基础,人们在此基础上把人工智能中关于知识表示和推理的方法引入进来,或者说把模糊集理论用到知识工程中去就形成了模糊逻辑和模糊推理;为了克服这些模糊系统知识获取的不足及学习能力低下的缺点,又把神经计算加入到这些模糊系统中,形成了模糊神经系统。这些研究都成为人工智能研究的热点,因为它们表现出了许多领域专家才具有的能力。同时,这些模糊系统在计算形式上一般都以数值计算为主,也通常被人们归为软计算、智能计算的范畴。
应用
模糊计算在应用上可是一点都不含糊,其应用范围非常广泛,它在家电产品中的应用已被人们所接受,例如,模糊洗衣机、模糊冰箱、模糊相机等。另外,在专家系统、智能控制等许多系统中,模糊计算也都大显身手。究其原因,就在于它的工作方式与人类的认知过程是极为相似的。在这里,笔者结合自己的研究实践,以一个建筑结构选型的专家系统为例,说明模糊推理系统是如何模仿领域专家的思维进行工作的,其中所用到的步骤、计算过程在其他模糊系统中也具有典型的代表性。
参考资料
最新修订时间:2024-05-21 16:13
目录
概述
简介
举例
模糊性
参考资料