泡沫金属是指含有泡沫气孔的特种金属材料。通过其独特的结构特点,泡沫金属拥有密度小、隔热性能好、隔音性能好以及能够吸收
电磁波等一系列良好优点,是随着人类科技逐步发展起来的一类
新型材料常用于航空航天、石油化工等一系列工业开发上。
泡沫金属的孔隙度常常达到90%以上,并且具有一定强度和
刚度的
多孔金属。这类金属孔隙度高,
孔隙直径可达至毫米级。
含有泡沫状气孔的
金属材料与一般烧结多孔金属相比,泡沫金属的
气孔率更高,
孔径尺寸较大,可达7毫米。由于泡沫金属是由金属基体骨架连续相和气孔
分散相或
连续相组成的两相复合材料,因此其性质取决于所用金属基体、气孔率和气孔结构,并受制备工艺的影响。通常,泡沫金属的
力学性能随气孔率的增加而降低,其
导电性、
导热性也相应呈指数关系降低。当泡沫金属承受压力时,由于气孔塌陷导致的受力面积增加和材料
应变硬化效应,使得泡沫金属具有优异的冲击能量吸收特性。
泡沫金属的制备有
粉末冶金法和
电镀法,前者通过向熔体金属添加发泡剂制得泡沫金属;后者通过
电沉积工艺在
聚氨酯泡沫塑料骨架上复制成泡沫金属。
粉末冶金法制造泡沫金属,是在粉末中加入
发泡剂(如NH4Cl),
烧结时发泡剂挥发,留下孔隙。用电化学沉积法可以制得规则形状孔隙、
孔隙率高达95%的泡沫金属,包括以Cu,Ni,NiCrFe,ZnCu,NiCu,NiCrW,NiFe等金属和合金为骨架的泡沫材料。将
电化学沉积在多孔体上的金属,经烧结使沉积组分连接成整体,强度达到要求的高孔隙泡沫金属,
孔隙度高,使用中可以填充更多的物质,如催化剂、
电解质等。
泡沫铝及其合金质轻,具有吸音、隔热、减振、吸收冲击能和电磁波等特性,适用于导弹、飞行器和其回收部件的冲击保护层,
汽车缓冲器,电子机械减振装置,
脉冲电源电磁波屏蔽罩等。
泡沫铜的导电性和延展性好,且制备成本比
泡沫镍低,导电性能更好,可将其用于制备电池负极(载体)材料、催化剂载体和电磁屏蔽材料。特别是泡沫铜用于电池作电极的基体材料,具有一些明显的优点,但由于铜的耐腐蚀性能不如镍好从而也就限制了它的一些应用。
因为泡沫金属具有一定的强度、延展性和可加性,可作轻质结构材料。这种材料很早就用于飞机夹合件的芯材。在航空航天和导弹工业中,泡沫金属被用作轻质、传热的支撑结构。因其能焊接、胶粘或电镀到结构体上,故可做成夹层承载构件。如作机翼金属外壳的支撑体、导弹鼻锥的防外壳高温倒坍支持体(因其良好的导热性)以及宇宙飞船的起落架等。在建筑上,需要泡沫金属制作轻、硬、耐火的元件、栏杆或这些东西的支撑体。现代化电梯高频高速的加速和减速,亦特别需要泡沫金属这种同时具备吸能和承载特性的轻质结构来降低能耗。圆柱形壳体广泛存在于工程结构中,如飞机机身和远离岸边的油井平台。薄壁圆柱壳在受到载荷作用时易于损坏,但若外壳由连续的泡沫:卷材支持,则该结构比同样直径和大小的未加强中心壳体具有较大的强度。泡沫铜较易制得,且便于变形,故适合作紧固器。泡沫金属还可作为许多有机、无机和金属材料的增强材料。如在泡沫镍中充入熔融铝凝固后制成泡沫镍增强的铝合金(NFRA)材料等。
泡沫金属非常适于用作多种承载镶板、壳体和管体的轻质j卷材,制成多种
层压复合材料。
多孔材料用于结构件的典型例子即是制作夹层镶板。现代飞机上采用的夹层板则使用了玻璃或
碳纤维复合材料蒙皮。这层蒙皮由金属铝或纸张·树脂蜂窝材料隔开,也可由刚性的聚合物泡沫体隔开,以便使该夹层镶板具有很大的比弯曲刚度和比
弯曲强度。同样的技术已被延伸到另外一些重量为关键指标的应用场合:太空飞船、雪橇、赛艇和可移动的建筑物等。
缓冲保护也是泡沫金属的主要用途之一,它必须具有吸收能量的能力,同时将作用于被保护物体上的最大作用力控制在引起损害的极限之下。多孔泡沫材料可很好地适合于这种应用场合。通过控制其相对密度,泡沫金属的强度可在很宽的范围内调节。此外,该材料几乎可在恒定的应力作用下承受很大的压缩应变,故大量的能量被吸收而不致产生高的应力。在制备人工骨方面,根据孔径为150¨m~250¨m且孔率较大的要求,
无机材料由于此时的强度不能满足使用要求,于是逐渐发展成泡沫金属的人工骨。这类泡沫金属都采用常规方法即主要为电镀法等生产,它们在成型等加工过程中以及在人体内均会受到载荷作用。在保持较高力学性能的同时实现人骨所需的较大孔率,即在满足人骨所需较大孔率的同时保持较高的力学性能,这对绝大多数不具备自恢复效应的人骨材料来说是极为重要。