波片是能使互相垂直的两光振动间产生附加
光程差 ( 或相位差)的光学器件。通常由具有精确厚度的石英、
方解石或云母等
双折射晶片做成,其光轴与晶片表面平行。以
线偏振光垂直入射到晶片,其振动方向与晶片光轴夹 θ 角( θ≠0、 ),入射的光振动分解成垂直于光轴(o 振 动)和平行于光轴(e振动)两个分量,它们对应晶片中的 o光和e光(见双折射)。
晶片中的o光和e光沿同一方向传播,但传播速度不同(折射率不同) ,穿出晶片后两种光间产生 (n0- ne)d光程差(见
光程),d为晶片厚度,n0和ne为o光和e光的折射率,两垂直振动间的相位差为Δj=2π(n0-ne) d/λ。 两振动一般合成为椭圆
偏振(见
光的偏振)。Δj=kπ(k为整数)时合成为
线偏振光 ;Δj=(2k+1)π/2,且θ=45°时合成为
圆偏振光 。凡能使o光和
e光产生λ/4附加
光程差的波片称为
四分之一波片。若以线偏振光入射到四分之一波片,且θ=45°,则穿出波片的光为圆偏振光;反之,圆偏振光通过四分之一波片后变为线偏振光。凡能使o光和e光产生λ /2附加光程差的波片称为
二分之一波片 。线偏振光穿过二分之一波片后仍为线偏振光,只是一般情况下振动方向要转过一角度。光程差可任意调节的波片称补偿器,补偿器常与
起偏器结合使用以检验
光的偏振状态。
波片按结构来分,有多级波片(multiple-order wave plate),胶合零级波片或称复合波片(compound zero-order wave plate)及真零级波片(true zero-order)。
真零级波片,延迟量的波长敏感度低,
温度稳定性高,接受有效角度大,性能大大优于其他两种波片。但真零级波片往往非常的薄,以石英为例,其在
可见光部分
双折射系数约为~0.0092。一个550nm为中心波长的真零级四分之一石英波片其厚度只有15um。如此薄的波片在制造和使用上都会遇到不少困难。
多级波片的厚度等于多个全波厚度(n×waves)加一个所需延迟量厚度。多级波片相对比较容易制造,缺点是其对波长,温度,
入射角均很敏感。
胶合零级波片(复合波片)是将两个多级波片胶合在一起。通过将一个波片的快轴和另一个波片的慢轴对准以消除全波
光程差,仅留下所需的光程差。胶合波片可以在一定程度上改善温度对波片的影响,但另一个结果是其增加了波片延迟量对入射角度及波长的敏感性。
波片按材料分,常见的有各种晶体波片,和聚合物波片,液晶波片。常用的晶体包括云母,
方解石,
石英等。
相比石英而言,聚合物材料的双折射系数比较小,所以更适合制造真零级波片,尤其是在可见波段。各种聚合物在不同波段的
色散程度不同,所以对不同应用要考虑用不同类型的聚合物。
消
色差波片是由几层不同的聚合物或晶体精确对准层叠而成的。消色差波片主要优点是在一定的带宽之内延迟量对波长的变化不敏感。
液晶波片(液晶
相位延迟器)是一种新型的可控相位延迟器。通过控制加在液晶两边的电压,可以改变液晶的
双折射系数,从而改变通过液晶波片光的相位差。