现代的波谱法不仅可以确定分子量、分子式、结构式,还可以使用
X射线衍射法,特别是使用单晶衍射仪,测定晶体的X射线衍射图,从而进一步确定分子中键长、键角等结构参数。
波谱法及其应用
物质在光(电磁波)的照射下,引起分子内部某种运动,从而吸收或散射某种波长的光,将入射光强度变化或散射光的信号记录下来,得到一张信号强度与光的波长或波数(频率)或散射角度的关系图,用于物质结构、组成及化学变化的分析,这就叫波谱法。
在十九世纪五十年代,开始应用
目视比色法。不久发现了Beer定律。十九世纪末开始了红外和紫外光谱测定。二十世纪,科学技术发展,仪器性能大大提高,实验方法不断改进和革新。特别是计算机的应用,使波谱法得到了突飞猛进的发展。
经典的化学分析去确定物质的分子量、分子式和结构式是很困难的。例如吗啡从鸦片中提出来到最后确定其结构大约用了150年的时间。
各种波谱法原理不同,其特点和应用也各不相同。每种波谱法也都有其适用范围和局限性。在使用时应根据测定的目的、样品性质、组成及样品的量选择合适的方法,在很多情况下要综合使用多种波谱法才能达到目的。
电磁波的性质
从量子观点看,光是由一个个光子组成。每个光子具有能量:光同时具有波动性和微粒性。 E=hυ=hc/λ=hc h为普朗常数,C为光速, υ为频率, E为波数(单位可用cm-1,波数-每cm波中波的个数)。
从波动观点看,光是电磁波。电磁波具有两个相同位相、互相垂直、又垂直于传播方向的振动矢量,即电场强度(又叫电矢量和光矢量)和磁场强度(磁矢量)。
线偏振光
光矢量一个平面内振动,只改变大小而不改变方位。在沿传播方向看过去,光矢量只一条线( ),故叫线偏振光;线偏振光分布在某一个平面上,所以线偏振光又叫
平面偏振光。
园偏振光
在传播过程中,光矢量的顶端的轨迹描出一个螺旋线,它的大小不变,方位变化。
面对传播方向看,光矢量顶端的轨迹顺时针旋转叫右旋偏振光,反时针旋转叫左旋园偏振光。
平面偏振光也可以看作由两束振幅相等而旋转方向相反的两束园偏振光的组合的结果。
椭圆偏振光
当平面偏振光通过手性化合物后,左右旋两束光被吸收情况不同导致振幅不相等。两束旋转方向相反而振幅不相等的园偏振光组成一束椭圆偏振光。 此时光矢量的大小和方向都在变。从传播方向面对光源看过去,光矢量顶端的轨迹是一个椭圆。