测量技术是在
机械加工车间工作的机械加工工人必须掌握的技术,此外还有同名图书《测量技术》。
测量介绍
测量中所采用的原理、方法和技术措施。电子测量的对象是材料、元件、器件、整机和系统的特征电磁量。这些电磁量大致包括:①基本参量,如电压、
功率、频率、阻抗、衰减和相移等;②
综合参量,如网络参量、信号参量、波形参量和
晶体管参量等;③特殊频段的参量,如激光频率、光纤电特性、亚
毫米波参量和
甚低频参量等。
对于某一测量对象,一般有多种测量技术可供选择,而某一种测量技术又往往可用于不同的测量对象。用于同一测量对象,不同测量技术的效果可能大致相同,也可能大不相同。在
电子测量中,对于不同参量、不同
量程、不同频段以至不同
传输线形式,往往要采用不同的测量技术。
测量分类
按照测量的实测对象
按照测量的实测对象,测量技术可分为以下两种。
① 直接测量技术:在测量中,无需通过与被测量成函数关系的其他量的测量而直接取得被测量值。如用
电压表直接测量电压。其
测量不确定度主要取决于测量器具的
不确定度,在一般测量中普遍采用。
②
间接测量技术:在测量中, 通过对与被测量成函数关系的其他量的测量而取得被测量值。如通过测量电阻R 两端的电压υ和流经电阻R的电流I,然后利用R=υ/I 的关系求得电阻值。其
测量不确定度分量的数目要多一些,一般在被测量不便于直接测量时采用。
按照测量的进行方式
按照测量的进行方式,测量技术可分为以下两种。
① 直接比较测量技术:在测量中,将被测量与已和其值的同一种量相比较。其
测量不确定度主要取决于标准量值的
不确定度和比较器的灵敏度和
分辨力,它可克服由于测量装置的
动态范围不够和频率响应不好所引入的
非线性误差。替代法、换位法等属于这一类。
② 非直接比较测量技术:不是将被测量的全值与标准量值相比较的比较测量。微差法、符合法、补偿法、谐振法、衡消法等属于这一类。
在建立
计量标准的测量中,经常采用基本测量技术,即
绝对测量技术。这是通过对有关的
基本量的测量来确定被测量值。其
测量不确定度一般是通过实验、分析和计算得出,精度高,但所需装置复杂。
按照测量对象的性质
按照测量对象的性质,测量技术可分为以下两种。
① 无源参量测量技术:无源参量表征材料、元件、无源器件和无源电路的电磁特性,如阻抗、传输特性和反射特性等。它只在适当信号激励下才能显露其固有特性时进行测量。这类测量技术常称为激励与响应测量技术。由于测量时必需使用
激励源,它又称为有源测量技术。
②
有源参量测量技术:有源参量表征电信号的电磁特性,如电压、
功率、频率和场强等。它的测量可以采用无源测量技术,即让被测的有源参量以适当方式激励一个特性已知的
无源网络,通过后者的响应求得被测参量的量值,如通过回路的
谐振测量信号频率。有源参量的测量也可采用有源测量技术,即把作为标准的同类有源参量与它相比较,从而求得其量值。
此外,电子测量技术还可有许多分法,如模拟和
数字测量技术;动态和
静态测量技术;接触和
非接触测量技术;内插和外推测量技术;实时和非实时测量技术;
电桥法、Q表法、
示波器法和
反射计法等测量技术;时域、
频域和
数据域测量技术;点频、扫频和广频等测量技术等。
变换测量技术
在
电子测量中,为了绕过在某些
量程、频段和测量域上对某些参量的测量困难和减小测量的
不确定度,广泛采用下列各种变换测量技术。
①
参量变换测量技术:把被测参量变换为与它具有确定关系但测量起来更为有利的另一参量进行测量,以求得原来参量的量值。例如,功率测量中的
量热计是把被测
功率变换为热电势进行测量,而测
热电阻功率计是把被测功率变换为电阻值进行测量;相移测量中可把被测相位差变换为时间间隔进行测量;截止
衰减器是把衰减量变换为长度量进行测量;有些
数字电压表是把被测电压变换为频率量进行测量。
②
频率变换测量技术:利用外差变频把某一频率(一般是较高频率或较宽频段内频率)的被测参量变换为另一频率(一般是较低频率或单一频率)的同样参量进行测量。这样做的一个重要原因是
计量标准和测量器具在较低频率(尤其是直流)或单一频率上的准确度通常会更高一些。例如,在
衰减测量中的
低频替代法和中频替代法就是在频率变换基础上的比较测量技术;采样显示、采样锁相在原理上也是利用了采样变频的
频率变换测量技术。
③ 量值变换测量技术:把量值处于难以测量的
边缘状态(太大或太小)的被测参量,按某一已知比值变换为量值适中的同样参量进行测量。例如,用测量放大器、
衰减器、
分流器、比例
变压器或
定向耦合器,把被测电压、电流或
功率的量值升高或降低后进行测量;用功率倍增法测噪声和用
倍频法测频率值等。
④ 测量域变换测量技术: 把在某一测量域中的测量变换到另一更为有利的测量域中进行测量。例如,在
频率稳定度测量中,为了更好地分析导致频率不稳的噪声模型,可以从
时域测量变换到
频域测量;在
电压测量中,为了大幅度地提高
分辨力,可以从模拟域测量变换到数字域测量。
减小不确定度
测量的目标是以尽量小的
不确定度求出被测量值。在
电子测量中,为了减小测量的不确定度,还可以采用以下的一些测量技术。
①
双通道相关测量技术:在比较测量中,为了减小电路和环境条件的变化所引入的误差,可采用双通道相关测量技术,也就是为被测的量和标准量建立两个相同的通道,从而使电路和环境条件的变化对它们的影响基本相同并相互抵消。卫星时间频率同步测量中,为抵消通道时延而采用的双向法就是一例。
② 自校准技术:为了消除某些测量器具在
检定了一段时间之后所产生的误差,如温漂和时漂等误差,可以为它们配备自校准(包括自调零)装置,以保证继续准确。例如高精度
数字电压表一般都具备自校准能力。
③ 实时误差修正技术:在测量被测参量的同时,也测出它的
影响量,并对它所引入的误差进行实时修正。例如,卫星时间频率同步测量中对
多普勒效应误差的实时修正。
④ 垫整和误差倍增技术:在测量中,可以采用垫整和误差倍增技术以增大误差与信息的比值,从而提高对误差的分辨力。例如,测量电压时所采用的标准电压垫整技术和测量
频率稳定度时所采用的频差倍增技术。
⑤ 测量数据处理技术:过去对于测量数据的处理总是在测量之后在纸面上进行。随着计算机在测量中的应用,一些根据数理统计原理对测量数据的处理,如
粗差的剔除、加权平均、阿仑方差的计算等已能在测量时进行。
技术措施
在
电子测量中,还有一些基本技术措施对于
低电平、高频率、高精度的测量十分重要。
① 接地:接地不良会导致地
回路电流,这将改变测量状态和影响测量结果。因此,对于测量系统的低电平部分要采用
单点接地或浮地等技术措施。
② 防干扰:为了减弱电磁干扰,须对敏感的输入部分采用
电磁屏蔽,要在模拟和数字两部分之间采用
光电隔离,并采取
去耦、滤波和同步抑制等技术措施以减弱或去除市电和无用信号等干扰。此外,增强有用信号以提高
信噪比也是防干扰的另一重要措施。
③
阻抗匹配:阻抗匹配在电子测量中是一个重要问题。它牵涉到能否取得最佳
功率和防止反射、
驻波的产生。为此还可以采用阻抗变换和缓冲隔离等技术措施。
④ 在集总参数的
高频测量中,须采取防止和消除寄生分布参量影响的技术措施。
电子测量技术对电子技术和其他科学技术的新原理、新方法、新器件和新工艺十分敏感并且反应很快。例如,电子技术中的采样、锁相、
频率合成、数字化、信号处理乃至微处理机应用等技术,已广泛地用于电子测量技术中。此外,全景和分段的
频谱分析技术可用于信号特性的测量;时域反射和
快速傅里叶变换技术可用于脉冲特性的测量;
网络分析和六端口技术可用于网络特性的测量;程序控制和
实时处理采用计算机技术等。至于激光、超导、
遥测、自动控制、光导传输和图像显示等新成就,也都在电子测量技术中得到了应用。